
Vol.:(0123456789)

Structural and Multidisciplinary Optimization (2025) 68:213
https://doi.org/10.1007/s00158-025-04135-3

RESEARCH PAPER

Neural topology optimization: the good, the bad, and the ugly

Suryanarayanan Manoj Sanu1  · Alejandro M. Aragón1  · Miguel A. Bessa2 

Received: 11 February 2025 / Revised: 21 August 2025 / Accepted: 26 August 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract
Neural networks (NNs) hold great promise for advancing inverse design via topology optimization (TO), yet misconcep-
tions about their application persist. This article focuses on neural topology optimization (neural TO), which leverages
NNs to reparameterize the decision space and reshape the optimization landscape. While the method is still in its infancy,
our analysis tools reveal critical insights into the NNs’ impact on the optimization process. We demonstrate that the choice
of NN architecture significantly influences the objective landscape and the optimizer’s path to an optimum. Notably, NNs
introduce non-convexities even in otherwise convex landscapes, potentially delaying convergence in convex problems but
enhancing exploration for non-convex problems. This analysis lays the groundwork for future advancements by highlighting:
(1) the potential of neural TO for non-convex problems and dedicated GPU hardware (the “good”), (2) the limitations in
smooth landscapes (the “bad”), and (3) the complex challenge of selecting optimal NN architectures and hyperparameters
for superior performance (the “ugly”).

Keywords  Topology optimization · Machine learning · Neural reparameterization · Implicit biases · Loss and objective
landscapes visualization · Optimization trajectories

Finding an effective representation of the decision space is cru-
cial in optimization, as a change of basis can transform a chal-
lenging problem into a more solvable one. Nature offers unparal-
leled examples of efficient representations—DNA, for instance,
encodes the complexity of trillions of brain connections using
just 30,000 genes (Stanley 2007). Inspired by such abstractions,
this study investigates reparameterizing the design space using
neural networks. Our goal is to evaluate whether this strategy, as
suggested in the literature, can accelerate convergence or yield
superior optima.

Topology optimization (TO) (Bendsøe and Kikuchi 1988)
has been applied across a wide range of problems in science
and engineering. It has proven effective for optimizing mate-
rial layouts in complex nonlinear (Xia et al 2018; Buhl et al
2000; Fritzen et al 2016; Bendsøe et al 1996; Nakshatrala
et al 2013; Chen et al 2018), transient (Min et al 1999; Le
et al 2012; Yoon 2022), and multi-physics problems involv-
ing coupled differential equations (Silva and Kikuchi 1999;
Yoon et al 2006; Kreissl et al 2011; Allen and Maute 2005;
Yoon et al 2018; Yu et al 2019). Notably, TO has pushed
design resolution boundaries to giga-scale for compliance
minimization (Aage et al 2017).

Despite these successes, standard density-based TO has
intrinsic limitations. First, fine mesh resolutions can lead to
high computational costs. To mitigate this, researchers have
explored reduced-order models (Kirsch and Papalambros
2001; Xia and Breitkopf 2014), conventional surrogate mod-
els (Raponi et al 2019; Yoshimura et al 2016), and machine
learning approaches (Woldseth et al 2022). However, these
methods still face challenges as TO typically relies on first-
order optimizers, which may require dozens—or even hun-
dreds—of iterations to converge. Second, TO’s gradient-
based search often leads to local optima, making it less
effective for non-convex problems. Strategies to address this
include deflation, where the objective function is modified

Responsible Editor: Joe Alexandersen.

Topical Collection: ICTAM 2024 - The centennial of ICTAM Guest
Editors: J. Alexandersen, A.M. Aragón, X.S. Zhang, E. Lund, E.
Wadbro, J. Kook

 *	 Alejandro M. Aragón
	 a.m.aragon@tudelft.nl

 *	 Miguel A. Bessa
	 miguel_bessa@brown.edu

1	 Faculty of Mechanical Engineering, Delft University
of Technology, Mekelweg 2, 2628 CD Delft,
The Netherlands

2	 School of Engineering, Brown University, 184 Hope Street,
Providence RI 02912, Rhode Island, United States

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-025-04135-3&domain=pdf
https://orcid.org/0000-0003-1991-5932
https://orcid.org/0000-0003-2275-6207
http://orcid.org/0000-0002-6216-0355

	 S. M. Sanu et al. 213   Page 2 of 26

to steer the optimizer away from previously found solu-
tions (Papadopoulos et al 2021), and continuation schemes,
which gradually modify the convexity of the problem in
hopes of escaping suboptimal local minima (Rozvany 2009).
Finally, because dimensionality of the design space is tied to
the mesh resolution, the scale of the optimization problem
can grow arbitrarily large, leading to significant computa-
tional burden and limiting the range of feasible optimiza-
tion algorithms. Thus, the way the problem is parameterized
plays a critical role in overcoming these challenges.

The standard density-based parameterization, which
assigns one decision variable per finite element, remains
the most widely used technique in topology optimization
(TO). This approach is often combined with penalization
methods, such as the solid isotropic material with penaliza-
tion (SIMP) (Bendsøe and Sigmund 2004) or the rational
approximation of material properties (RAMP) (Stolpe and
Svanberg 2001). However, alternative parameterization tech-
niques have gained traction in recent years. For instance,
geometric projection methods (Zhang et al 2016) and mov-
ing morphable components (Guo et al 2014) use simple geo-
metric primitives as building blocks, drastically reducing the
number of design variables needed to represent a structure.
These reparameterization strategies decouple geometry from
analysis, creating a design space that does not scale with
resolution. Other reparameterization approaches explored in
TO include Fourier coefficients (White et al 2018, wavelets
(Poulsen 2002), B-splines (Qian 2013), element connec-
tivities (Yoon and Kim 2005), distance fields(Biswas et al
2004), and radial basis functions (Wang and Wang 2005.
While these techniques offer advantages, some lead to con-
strained design spaces with limited expressivity, potentially
hindering the discovery of optimal structures for a given
resolution. This limitation highlights the need for a gen-
eral class of expressive and differentiable reparameteriza-
tion strategies that can be adapted to specific optimization
problems.

Neural networks (NNs) offer a compelling alternative
for reparameterizing topology optimization. Unlike other
reparameterization methods, NNs are highly abstract and
expressive (Hornik et al 1989). Moreover, their empiri-
cal success in diverse fields, despite being optimized with
simple gradient-based algorithms starting from random ini-
tialization (Danilova et al 2022), suggests they can offer a
promising design space. In TO, however, NNs have primar-
ily been used for supervised learning tasks. These include
using NNs as surrogates to enhance computational effi-
ciency—by replacing analytical sensitivities or finite ele-
ment analysis (Chi et al 2021; Qian and Ye 2020)—or to
predict near-optimal structures without optimization itera-
tions (Kallioras et al 2020; Kallioras and Lagaros 2020; Xue
et al 2021; Sosnovik and Oseledets 2019; Banga et al 2018).
Such supervised approaches require large training datasets

and have limited extrapolation capabilities i.e., they per-
form poorly when encountering inputs outside the training
set (Woldseth et al 2022). Consequently, their use has been
discouraged. In contrast, using NNs for reparameterization
without supervised training—relying instead on unsuper-
vised learning—provides an alternative approach. This strat-
egy operates at the intersection of TO and machine learning,
requiring no training data while leveraging the flexibility of
NNs. Despite its potential, neural reparameterization in TO
is still a nascent field.

The first study in neural reparameterization for TO, con-
ducted by Hoyer et al (2019), utilized convolutional neural
networks (CNNs). This choice was motivated by the resem-
blance of grid-based structures to images and the efficiency
of CNNs in image processing. They reported a slight perfor-
mance advantage of neural reparameterization over standard
density-based TO for compliance-minimization problems.
Similarly, Zhang et al (2021) adopted a CNN-based archi-
tecture and tested it on various problems, including stress-
constrained compliance optimization, structural natural
frequency optimization, compliant mechanism design,
optimal heat conduction, and hyperelastic structure optimi-
zation. Their findings showed comparable performance to
conventional TO. Departing from CNN architectures, Chan-
drasekhar and Suresh (2020) and Chandrasekhar and Suresh
(2022) proposed fully connected neural networks to repre-
sent the density field as a continuous function of Cartesian
coordinates, decoupling the geometric representation from
the finite element mesh. Other studies (Deng and To 2020;
Doosti et al 2021; Halle et al 2021; Zehnder et al 2021)
explored similar architectures, experimenting with variations
in filtering schemes, hyperparameters, and network designs.
Despite these efforts, neural reparameterization remains a
black box, and its utility is still uncertain. Critical aspects,
such as the influence of neural architectures on optimization
dynamics and their correlation with final performance, have
not been thoroughly investigated. Furthermore, the lack of
adherence to standard benchmarking practices for TO (Sig-
mund 2022) makes it challenging to assess whether reported
improvements are meaningful.

This article focuses on characterizing and explaining the
effects of NN reparameterization in topology optimization,
which we name as “neural topology optimization” (neural
TO). As a baseline for comparison, we use density-based
TO with the SIMP method (Bendsøe and Kikuchi 1988)
and the method of moving asymptotes (MMA) as the opti-
mizer (Svanberg 1987). Note that other TO methodologies
could be used as baseline, but the point of this work is not
to claim superiority of neural TO over other TO strate-
gies. Instead, we focus on providing the tools to effectively
demonstrate both the positive and negative effects of neu-
ral TO, guiding the community toward meaningful future
developments.

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 3 of 26  213

1 � Formulation

Formally, the typical TO problem of minimizing structural
compliance via a density-based method is formulated as fol-
lows (Sigmund and Maute 2013):

where � ∈ ℝ
N is a vector of decision variables (physical

density field) taken from the design space D = [0, 1]N , N
is the total number of finite elements; U is the displace-
ment vector obtained by finite element analysis, i.e., after
solving the linear system of equations KU = F , with K and
F denoting the global stiffness matrix and global force vec-
tor, respectively; c is the objective function, which gives a
measure of compliance, and g0 is the volume of material that
needs to satisfy the inequality constraint, with V0 denoting
the maximum allowed volume. The subscript i denotes the
corresponding element-wise quantities, and thus vi denotes
the volume of the ith element and �i its density. Often, the
SIMP law (Bendsøe and Sigmund 2004) is used to penalize
intermediate density values (with penalty p = 3.0 ) to push
the optimization toward a 0 and 1 (black-and-white) design.
A density filter is usually applied to prevent the formation of
artificially stiff checkerboard patterns and to enforce a mesh-
independent length-scale. The method was re-implemented
based on the 88-line Matlab implementation (Andreassen
et al 2011) and is considered as the baseline in all experi-
ments (Fig. 1).

(1)

�⋆ = argmin
�∈D

F(U(�),�) = U
⊺
F ≡ c,

such that g0(�) = V =
∑N

i=1
vi𝜌i ≤ V0,

KU = F,

0 ≤ 𝜌i ≤ 1, i = {1,… ,N},

,

1.1 � Neural topology optimization

We define reparameterization as any approach where the
physical density field is expressed as the output of a func-
tion h, i.e., � = h(�) , where � ∈ ℝ

M are the new decision
variables1. As a result of reparameterization, the minimized
objective and the constraint are no longer F(�) and g0(�)
but the composition functions F◦h(�) and g0◦h(�) , respec-
tively. Therefore, when an optimizer is used to update � , the
physical density field is altered indirectly. Representing the
reparameterization in this way allows for more flexibility in
tailoring the decision space, as it can be both over-param-
eterized ( M > N  ) or under-parameterized ( M < N  ) when
compared to the number of design parameters used in the
baseline. Therefore, reparameterization decouples the finite
element discretization and the representation of the density
field.

Introducing a neural network (NN) to define the density
distribution in a finite element mesh results in a method
we refer to as “neural topology optimization” (Fig. 1).
This reparameterization transforms the decision space
into D̃ , where each parameter becomes unbounded, i.e.,
−∞ ≤ �i ≤ +∞ . NNs are parametric universal function
approximators (Hornik et al 1989), in which the parameters
are arranged into layers with one input layer and output lay-
ers and several hidden layers in between. The ith layer car-
ries out a mathematical operation of the form �

(
Wizi + bi

)
 ,

where zi is the input, Wi is a matrix of weights, bi the cor-
responding bias vector, and � is a nonlinear activation

Fig. 1   Schematic of neural topology optimization (TO). Unlike stand-
ard density-based TO (baseline), an NN outputs the physical densities
� (within the bounds [0, 1]), on which finite element analysis is per-
formed to obtain the objective. The network parameters are updated
through an optimizer to indirectly alter the density field. For the base-
line, the individual “pixels” are the decision variables, while for the

network, trainable parameters form the decision space. Depending on
the network architecture, the output can either be the complete den-
sity field or the density at a specific location in the design domain. In
the latter case, the network represents a continuous field (see Sec. B
of the appendix for details about network architectures)

1  Note that even filters used in density-based TO can be regarded as
reparameterizing the physical densities.

	 S. M. Sanu et al. 213   Page 4 of 26

function. For a network of L layers, i.e., L − 2 hidden layers,
the density is calculated recursively as

The reparameterization function h is represented as a NN
with trainable parameters � =

{
W1 …WL, b1 … bL

}
 , i.e.,

� = h
(
�, z1

)
 . Because the reparameterized decision vari-

ables are unbounded, a transformation is necessary to map
the network outputs so that �i ∈ [0, 1] for material inter-
polation and further analysis. In this paper, we chose two
approaches: (1) apply a sigmoid function to the network’s
outputs, or (2) use a shifted-sigmoid “layer” (Hoyer et al
2019) ( {h(�) | 0 ≤ h(�)i ≤ 1, g0(h((�))) = V0} ), where the
shift parameter is determined with a bisection algorithm to
strictly enforce the volume constraint as well (see appen-
dix B.1)2. Thus, the former strategy still requires a con-
strained optimizer similar to the standard approach (e.g.,
MMA, Svanberg (2002)) while the latter results in an uncon-
strained optimization, which can be solved by the common
optimizers in machine learning (e.g., Adam, Kingma and Ba
(2015)). Although many optimizers are available in machine
learning, Adam remains the most widely used. A thorough
benchmark study (Schmidt et al 2021) has shown that a well-
tuned Adam optimizer performs strongly across a wide range
of tasks. Consequently, Adam was chosen for our study.

2 � Experiment to illustrate the effect
of reparameterization

Start by considering the 2-D stress-constrained truss optimi-
zation problem (Stolpe 2003; Kirsch 1990), shown schemati-
cally in Fig. 2a. In this problem with an applied unit load in
the middle node, the objective is to minimize the mass of the
structure with constraints on the stresses of the bars. The
decision variables are the areas of the two bars A1 and A2 .
The mathematical formulation of this problem is included
in Sec. A of the appendix.

This seemingly simple problem has a two-dimensional
decision space, which is shown in Fig. 2b. The figure high-
lights the feasible region (white), the constraints (red and
orange), and local and global optima labeled as �l and �g ,
respectively3. As apparent from the figure, the design space
for this problem is degenerate in the sense that the global
minimum �g = (1, 0) can be reached from the feasible set

(2)� = �
(
W

L
�
(
⋯ �

(
W

2
�
(
W

1
z
1
+ b

1

)
+b

2

)
⋯
)
+ b

L

)
.

only along the line A2 = 0 . Conversely, the local optimum,
located at �l = (0, 1) can be reached more easily from the
feasible set. It is therefore extremely challenging to find the
global minimum using gradient-based optimization. This is
shown by the typical trajectory followed by the MMA opti-
mizer from a feasible starting point �0 = (1, 1) (see baseline
trajectory in green).

To explore the effect of reparameterization, we use the
smallest NN architecture consisting of only three weights
( �1 , �2 , and �3 ) from a four-neuron setup as shown in Fig. 2c.
We remove the network’s bias parameters (to facilitate visu-
alization) and nonlinearly transform the original two-dimen-
sional decision space ( A1 and A2 ) into a three-dimensional
space. As a result, we show that the same optimizer (MMA)
is able to reach the global optimum �g from the same starting
point, following the trajectory in Fig. 2d. A two-dimensional
projection of this trajectory is also plotted in Fig. 2b for ref-
erence, which shows that the optimizer accesses the global
optimum through the linear subspace. Thus, a well-chosen
reparameterization reshapes the decision space, making new
trajectories possible for the optimizer to reach the otherwise
inaccessible global optimum. In this example, two factors
facilitate this access. First, in Fig. 2d we see surfaces cor-
responding to the constraints that are periodically repeated
due to the harmonic activation function chosen. As a result,
there is an infinite number of global optima. However, this
alone does not explain how the optimizer accesses the linear
subspace (which remains degenerate, as we show in Sec. A
of the appendix). The inset in Fig. 2d provides a closer view
of the path to the optimum, sliced by three orthogonal planes
intersecting the found global optimum (Fig. 2e). The feasible
regions (white) in these planes indicate that the access path
“opens up”. However, this effect resembles constraint relaxa-
tion (Verbart et al 2016; Duysinx and Bendsøe 1998; Cheng
and Jiang 1992), where even if the degeneracy persists, it is
surrounded by regions with extremely low constraint viola-
tions, appearing nearly feasible. Additional analytical and
empirical details are provided in Sec. A of the appendix.

This example illustrates the positive impact of neural
reparameterization on non-trivial objective landscapes.
However, it does not address the challenges of identifying
such beneficial network architectures, nor does it determine
whether this approach can be advantageous for high dimen-
sional continuum TO problems such as standard compli-
ance optimization. Additionally, practical neural networks
often have orders of magnitude more parameters, compli-
cating the analysis. Therefore, the remaining of the article
will discuss a three step analysis strategy to understand the
effects of NN choices in the context of neural TO, namely:
1) visualizing objective landscapes; 2) analyzing optimizer
trajectories; and 3) quantifying the expressivity of NNs. We
select two conventional structural compliance TO problems,
namely the tensile and the Michell beam cases (see Fig. 13

2  Note that all these operations (including the density filter) that
result in physical densities are absorbed into the definition of the neu-
ral network function h.
3  Without constraints, the problem has a trivial global optimum at
(0, 0). Therefore we refer to the global optimum of the constrained
problem.

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 5 of 26  213

of the appendix), which have optimized solutions with dif-
ferent characteristic features (e.g., coarse and fine features),
to showcase the results. We also consider three representa-
tive yet different NN architectures: 1) a feedforward NN
with the commonly used Leaky-ReLU activation function
(MLP) (Chandrasekhar and Suresh 2020); 2) a feedforward
NN with sinusoidal activation functions (SIREN) (Sitzmann
et al 2020); and 3) a convolutional NN (CNN) (Hoyer et al
2019). A reader unfamiliar with these NNs is referred to
Sec. B of the appendix (as well as the SI).

3 � High‑dimensional landscape analysis

3.1 � Objective landscape visualization

In machine learning (ML) terminology, F(�) is the loss
function for the NNs. Thus, for every 𝜽 ∈ D̂ , we can asso-
ciate a scalar value c = F(h(�)) and together, this forms the
(M + 1) dimensional loss landscape of the reparameterized
optimization problem. High-dimensional neural loss land-
scapes are often visualized by perturbing a single chosen
point along a single direction or along two directions (Good-
fellow and Vinyals 2015; Li et al 2018). However, none of
these methods allows a fair comparison of neural schemes

Fig. 2   Two-bar problem with stress constraints optimized using
MMA, both with and without neural reparameterization: a Schematic
showing two bars subjected to an axial load at the middle node. The
objective is to minimize total mass by varying the bar areas (decision
variables A1 and A2 ), with constraints on the maximum stress of each
bar; b Original decision space, with the white area showing the feasi-
ble region of the design space (note the linear feasible subspace near
(1, 0) along A2 = 0 ), and the colored regions noting the constraint
violations. Starting from a feasible point �0 = (1, 1) , MMA converges
to the local optimum �l = (0, 1) . Also shown is the projected trajec-
tory after reparameterization with an appropriate network, converg-

ing to the “singular” global minimum �g = (1, 0) ; c Network used to
reparameterize the problem, with a fixed input ( z1 = 0.5 ) and only 3
parameters ( �i ). The hidden neuron has a parametric sine activation
function, and outputs A1 and A2 , where �0 is a hyperparameter; d
The neural decision space and the corresponding trajectory followed
by the optimizer in this space. The decision space (left) consists of
repeating units, and the inset (right) shows a zoomed view of the dis-
torted constraint surfaces; e Three planes passing through the global
optimum showing constraints, infeasible regions, and feasible paths
to the solution. More details of the plots are given in SI and Sec. A
of the appendix

	 S. M. Sanu et al. 213   Page 6 of 26

with the baseline. Unlike neural network parameters, the
decision variables in the baseline are bounded, and thus per-
turbations can violate the bounds, making the loss evalua-
tion impossible, especially near minima. More importantly,
the magnitude of the perturbations is arbitrary. As a result,
smaller perturbations often show convex landscapes (due
to the local convexity of even non-convex functions). Thus,
comparing loss landscapes without considering the length-
scale of the visualization may be meaningless.

We propose a simple yet general method, building on
the 1D visualization, to compare different optimization
landscapes. To do so, we adopt the definition of reparam-
eterization as a mapping from the decision space to the
physical density space (i.e., � = h(�) ). Under this defi-
nition, neural networks are analogous to the traditional
filters and projections commonly used in density-based
topology optimization but with a length-scale depend-
ent on the specific architecture (Dupuis and Jacot 2021).
The procedure is detailed in Algorithm 1 in Sec. C of
the appendix. First, we choose two reference points �1
and �2 in the physical density space. For this study, we
chose the physical density of the baseline’s converged
solution as the first reference point. For the second point,
we investigated two options:

1.	 A uniform density design, which corresponds to the
commonly used starting point of the baseline; and

2.	 Multiple random density designs, which are commonly
used as initialization points for the neural networks.

Second, for each reparameterization, we find the points in
the decision space that generate these densities by solving
the following optimization problem:

where N is the number of finite elements4. By solving Eq. (3)
once for each reference point and for a given reparameteriza-
tion h, we obtain the corresponding decision space points 𝜽̂1
and 𝜽̂2 . Visualization in 1-D works by interpolating between
these two points, i.e., by evaluating the objective and con-
straint values at a series of points between them. If the two
points chosen have decision variables that are within bounds,
all points along the line joining them would also satisfy the
bounds. Mathematically, any point on the line joining two
points �1 and �2 can be represented as

(3)𝜽̂ = argmin
𝜽

1

N

N∑

j=1

(
h(𝜽)j − �j

)2
,

Therefore, the loss landscape can be plotted by calculating
the objective F◦h(��) and constraint g0◦h

(
��

)
 values for

different values of � . By keeping the density space points the
same for different reparameterizations, the loss landscapes’
length-scales are linked and comparisons are fair. To remove
the bias introduced by the dimensionality of the design
space, we chose network architectures (for MLP, SIREN,
and CNN) with roughly the same number of parameters as
the baseline.

 Fig. 3 shows compliance on the ordinate axis as a
function of linear interpolation between these two refer-
ence points, where � = 0 and � = 1 denote initial and final
designs, respectively5. The first reference point refers to an
initial design with uniform density (solid thick line) or ran-
dom density initial designs (dashed thin lines). The second
reference point is the solution obtained from the baseline for
p = 1 , known to be a convex problem (Sigmund et al 2016).
Parameters are then determined to represent these points,
and compliance values are evaluated for interpolated param-
eters 0 < 𝛼 < 1 . The figure also indicates if the constraint
on maximum material has been violated. Fig. 3 clarifies
that neural TO leads to non-convex paths that link different
initialization points to the final design obtained by density-
based TO, i.e., neural TO introduces “bumps” in the optimi-
zation path when linking the same initial and final designs of
the baseline. This is relevant because these “bumps” impact
the optimization process, as shown in the next subsection.
Interestingly, the CNN architecture is less prone to introduc-
ing non-convexities than the other two architectures. While
the results are shown for p = 1 , the same holds for p = 3 , as
well as for all other TO examples we considered (see SI). For
p = 3 non-convexities are even more pronounced.

3.2 � Optimizer trajectories

Visualizing objective landscapes offers qualitative insights
into the optimization process, but the linear slices observed
do not depict the actual optimizer’s path. These landscapes
were visualized by connecting initial and final designs (deci-
sion variables) obtained through the baseline strategy (not
neural TO). Hence, the second step in our analysis contrasts
the actual trajectories followed by the optimizer in neural
TO versus those of the baseline. This approach uses the opti-
mizer as a probe to explore the landscape. To ensure fair-
ness, we initiate all analyses from the same starting point.
The idea is that by using the same optimizer, the differences
in the trajectories can reveal how the reparameterization
alone affects the landscapes. To compare the trajectories,

(4)�� = �1 + �
(
�2 − �1

)
, 0 ≤ � ≤ 1.

4  Note that even though we have used � here, this method is equally
applicable to visualize the baseline’s landscape as well. For instance,
it can be used to assess the effect of adding projection filters or mak-
ing changes to SIMP’s penalty, among other modifications. Further-
more, other reference points can also be chosen based on conveni-
ence.

5  This linear slice of the landscape reflects what a line-search algo-
rithm would encounter along this direction.

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 7 of 26  213

we note that the gradient of the objective function �c plays
an important role in how the optimizer traverses the land-
scape. Therefore, we plot the magnitude of the objective’s
gradient ‖�c‖—calculated using automatic differentiation
and verified using finite difference calculations—and the
gradient’s direction. The latter is calculated as the angle �
between successive gradient vectors according to the cosine
similarity, i.e.,

for iterations i − 1 and i. In addition, we plot the optimiza-
tion history, showing how the objective and constraints vary
from one step of the optimizer to the next in the different
landscapes. Finally, we examine the linear subspace that
connects the starting and ending points of the optimization
trajectory. To do this, we use Eq. (4) to interpolate between
the starting point (uniform gray, which remains the same
for all methods) and the solutions found in each decision
space. It is important to note that such a plot does not allow
comparisons among landscapes but provides information
specific to the converged solution, as Eq. (3) is not used for
making these plots.

We consider two different optimizers, such that the distor-
tion of the objective landscape by neural TO is isolated from
the choice of optimizer: 1) MMA (Svanberg 1987), which
is common in TO literature; and 2) Adam (Kingma and Ba
2015), which is used in the NN literature. Note that hyperpa-
rameter optimization is performed for each optimizer fairly
for every test case considered (see Sec. E of the appendix).
Fig. 4a shows the compliance normalized by the compliance
of the best design obtained by the baseline for the Michell
problem with p = 3 , as well as the volume constraint when
using MMA with each of the architectures for neural TO. In
essence, all cases converge to similar and feasible designs

cos� =
�c(i).�c(i−1)

‖‖�c(i)‖‖‖‖�c(i−1)‖‖
,

(see Fig. 4c), although usually requiring more iterations
for neural TO compared to the baseline method. Fig. 4 also
provides additional information on two important charac-
teristics of the optimization process for neural TO. First,
if we linearly interpolate between the initial point in the
decision space to the final one, we see in Fig. 4b that the
objective landscape is either non-convex or has significant
constraint violations for all architectures of neural TO (and
for all problems we evaluated, as can be seen in SI). Sec-
ond, the evaluation of the gradient norm and angle for each
iteration in Fig. 4d reveals that all neural TO strategies zig-
zag through the optimization path, i.e., the angle is rarely
zero as it was observed for the baseline. This demonstrates
that neural TO introduces non-convexities (“bumps”) in the
objective landscape (as discussed earlier in Fig. 3), even for
otherwise convex landscapes as obtained for p = 1 . These
“bumps” perturb the way the optimizer traverses the land-
scape, thereby slowing down the optimization, i.e., neural
TO usually requires more iterations to converge as compared
to the baseline method. SI shows the same results when con-
sidering the Adam optimizer, which favors the optimiza-
tion process of neural TO. While using a CNN architecture
proved surprisingly competitive, the results herein seem to
indicate an overall negative outcome for neural TO since
they require more iterations, at least for well-behaved and
nearly convex compliance optimization problems. This is an
important limitation in practice.

4 � Expressivity of neural TO

The analysis so far focused on NN architectures whose num-
ber of parameters is comparable to those used by the baseline.
However, the design space of neural TO can be over- or under-
parameterized, i.e., the number of decision variables (weights

Fig. 3   The objective landscapes (interpolating between the same
reference points) for different neural reparameterization methods
compared against the baseline. The end point, at � = 1 , is the deci-
sion space point corresponding to the baseline solution ( ̂𝜽

⋆
 ) while the

starting point is either uniform gray ( ̂𝜽u , solid thick lines) or random
values (denoted by multiple gray dashed thin lines). Plots are shown

for Michell boundary value problem for SIMP penalty p = 1 (see SI
for more results). Constraint violations are indicated by colored mark-
ers, with the size of the markers proportional to the violation at each
point

	 S. M. Sanu et al. 213   Page 8 of 26

and biases of the NN) can be higher or lower than the number of
finite elements’ density values. Here we investigate the effect of
the decision space dimensionality, i.e., the number of trainable
parameters, for the three NN architectures. If a network is not
capable of representing the necessary structural features, then
neural TO will not be effective because there will be designs that
cannot be created (the design space becomes restricted). Con-
versely, even if a network is capable of representing the neces-
sary structural features, the objective landscape’s non-convexity
with respect to the network parameters can make the optimiza-
tion process more difficult (or easier), as demonstrated earlier.

Herein we use a simple strategy to assess the network expres-
sivity by assuming that baseline solutions represent the ground
truth (for which we used MMA with tuned hyperparameters).
We then quantify the neural networks’ ability to represent such
topologies and use that quantity as a measure of the expres-
sivity. We use the peak signal-to-noise ratio (PSNR), which is

commonly used in computer vision literature to measure the
discrepancy between a noisy (or reconstructed) image and the
ground truth. The PSNR is calculated as

where R is the maximum possible pixel value that we set to
R = 1 , and MSE refers to the mean-squared error. Therefore,
a high PSNR value corresponds to a design that is visu-
ally similar to that obtained by the baseline. For instance,
the lowest value in Fig. 11 is PSNR ≈ 33 and is visually
indistinguishable.

First, we generated baseline solutions for three test cases—
namely, the Messerschmitt-Bölkow-Blohm (MBB), Michell,
and cantilever beams (see Fig. 13)—at the required mesh resolu-
tion, with the target volume set at V0 = 30% . Notice that the

(5)PSNR = 10 log10
R2

MSE
,

Fig. 4   Comparison of MMA’s trajectory on the neural landscape
against the conventional landscape for the Michell problem (with
penalization p = 3 and target volume fraction of 60%): a Compliance
c normalized by the baseline solution c⋆ (left ordinate) and volume
fraction V (right dashed ordinate), as functions of the optimization
iteration; b Normalized compliance interpolated between the initial

and optimized solutions. The size of the dots indicate the amount of
constraint violation; c Best feasible designs obtained during optimiza-
tion for each method, all having similar compliance; d L2-norm of the
objective gradient and the angle between successive gradient vectors
at each point along the optimizer’s trajectory

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 9 of 26  213

optimized designs for these bending-dominated problems will
portray fine structural features. Next, we selected a series of net-
works—both under- and over-parameterized—with different
number of network parameters. Namely, the ratios between the
network and baseline parameters are

{
3

10
,

6

10
,
23

10
,
37

10
,
50

10

}
 (see

SI for exact architecture details)6. Second, we solved Eq. (3) for
each network and test case combination by substituting � with
the target baseline solution �⋆ and subsequently computed its
corresponding PSNR value. After obtaining the PSNR values
for the three test cases, the worst value was taken as the measure
for that particular network at that mesh resolution. Because this
measure is influenced by the optimizer and its hyperparameters,
we also conducted hyperparameter tuning to maximize the
PSNR value. Finally, we repeated this procedure five times with
different starting points for the hyperparameter optimization to
obtain PSNR values for each set of the best-identified hyperpa-
rameters. This allowed us to calculate the mean and confidence

bounds. We repeated the experiment for four different mesh
resolutions ( 64 × 32 , 128 × 64 , 256 × 128 , and 320 × 160).

Fig. 5 presents the number of network parameters in abscissas
and the peak signal-to-noise ratio (PSNR) in ordinates. PSNR
is a common metric for assessing image reconstruction quality,
with values above 60 dB considered high. The PSNR is calcu-
lated based on the worst fit obtained from the Messerschmitt-
Bölkow-Blohm (MBB) beam, cantilever beam, and Michell
beam test cases (see Fig. 13). The CNN has the highest recon-
struction capabilities for any number of parameters7. Unsur-
prisingly for a reader familiar with machine learning, MLP and
SIREN are less expressive than CNNs. Each curve also includes
a cross symbol that separates the under-parameterized regime (to
the left) from the over-parameterized regime (to the right). Note-
worthy, CNNs are always over-parameterized and both SIREN
and MLP lose expressivity as they become under-parameterized.

Fig. 5   a Peak signal-to-noise ratio (PSNR) values for NNs with dif-
ferent number of parameters, measured for 4 mesh resolutions (image
sizes). A higher PSNR value indicates that the NN is able to accu-
rately represent the design obtained from the baseline (taken as
ground truth). Shaded region denote confidence intervals (one stand-
ard deviation) measured across several tuned hyper-parameters. The
dashed vertical lines correspond to a network that has about 2000

parameters, independent of mesh resolution. Cross markers indicate
architectures with parameters matching each mesh resolution, dis-
tinguishing between over-parameterized and under-parameterized
regimes. b Final designs for the Michell beam problem and their
deviations from the baseline for a 320 × 160 resolution for all net-
works corresponding to cross markers

6  We note that the CNN architecture cannot be under-parameterized
when compared to the number of finite elements, thus all CNN net-
works are only over-parameterized.

7  The decreasing PSNR values for increasing CNN parameters is
due to two factors: 1) Training with lower floating-point precision on
GPUs introduces numerical effects as the errors are already very low
( < 10

−6 ); and 2) Allocating parameters across different types of CNN
layers can impact performance.

	 S. M. Sanu et al. 213   Page 10 of 26

Finally, the expressivity of MLPs drop drastically at higher mesh
resolutions, where more fine features are present (Fig. 5b).

The differences in expressivity have been explained in
NN literature in the context of image learning (Ulyanov
et al 2017; Strümpler et al 2022). CNNs use convolutional
filters that capture important features of images and intro-
duce translation equivariance. While MLPs start training by
learning low-frequency features, SIRENs do so with high-
frequency features (Rahaman et al 2019). Practical TO prob-
lems often involve slender structures that are more easily
reconstructed by networks able to generate high-frequency
features.

Regarding the MLP and SIREN network architectures, in
most published works the network size is kept constant with-
out regard to the mesh resolution (Chandrasekhar and Suresh
2020; Deng and To 2020; Chandrasekhar and Suresh 2022).
A vertical dashed line in the figure indicates the PSNR
results attained by a network architecture with approximately
2000 parameters. At the highest resolution, this fixed archi-
tecture must represent a design with 320 × 160 = 51 200
pixels (or densities) using approximately 2000 parameters,
resulting in over a 250-fold compression and degrading the
representation quality accordingly. Thus, using a network of
fixed size produces simpler structures as the mesh resolution
is increased. Finally, the superior performance of SIREN
compared to MLP can be attributed to SIREN’s ability to
represent high frequencies necessary for sharp solid-void
transitions, similar to square waveforms. MLP struggles with
this due to its spectral bias, which causes it to fit lower-
frequency signals first and capture higher frequencies very
slowly.

5 � Performance of neural TO

While the expressivity of a reparameterization can be
advantageous for certain boundary value problems, it may
prove detrimental for others, depending on the problem’s
characteristics. For instance, the density filter used in the
baseline reduces expressivity but prevents convergence to
checkerboard patterns, which are otherwise favored by the
optimizer. Ultimately, the optimization dynamics dictate the
effectiveness of a given reparameterization.

We employ performance profiles (Dolan and Moré 2002)
to compare neural TO against the baseline, considering three
boundary conditions (MBB, tensile, and bridge cases) and
volume fraction constraints ranging from 10% to 60%, ensur-
ing diverse problem features. This results in a total of 18
distinct problems (see Rojas-Labanda and Stolpe (2015) for
an example of performance profiles in TO). The profiles
evaluate three metrics: (1) the best objective value achieved
within a fixed budget of 200 function evaluations (first col-
umn), (2) the number of iterations to convergence (second

column)8, and (3) the actual performance after thresholding
gray designs into black-and-white. The abscissa represents
the tolerance percentage, indicating the allowable deviation
from the best solution obtained across all methods (not nec-
essarily the baseline). The ordinate shows the percentage
of problems where the performance satisfies this tolerance.
Since the performance of optimizers depends on the cho-
sen hyperparameters, we tuned them individually for each
test case and for all methods (including both the baseline
and neural reparameterizations) to ensure fair comparisons.
Hyperparameter tuning can be computationally expensive as
it involves a bi-level optimization process, where topology
optimization is repeated for each set of hyperparameters.
For efficiency, the hyperparameters for each problem were
optimized on a coarser mesh size of 64 × 32 and then applied
to the final optimization at a higher resolution of 576 × 288
(see Sec. E of the appendix for more details).

The performance profiles reveal several intriguing
insights into the interaction between the optimizer and
the loss landscape. First, Adam consistently outperforms
MMA in finding better solutions, as evidenced in the first
column of Fig. 6. This is because Adam’s adaptive learn-
ing rates enable it to navigate the tortuous objective land-
scapes of neural TO effectively, making it a favored opti-
mizer in machine learning. This holds true irrespective of
the reparameterization chosen. Second, among the neural
reparameterizations, MLPs are the least effective in find-
ing optimal solutions. Their limited expressivity prevents
them from representing thin structural members, which
are critical for bending-dominated problems. Conversely,
CNNs, with their high expressivity, can sometimes suffer
from structural links being severed during thresholding,
leading to increased compliance (third column). Interest-
ingly, CNN-based designs often remain viable even after
thresholding, especially when the optimization starts from
favorable initializations. Striking a balance, SIRENs main-
tain their performance after thresholding due to careful tun-
ing of their frequency hyperparameter to match the problem
characteristics. Third, on average, all neural TO schemes
converge more slowly than the baseline, with SIRENs being
the slowest (requiring more than twice the number of itera-
tions). This is attributed to the increased complexity of the
associated loss landscapes. However, CNNs can converge on
par with or even faster than the baseline, benefiting from the
relatively well-behaved landscapes they generate. Finally,
when focusing on the best performance, CNNs optimized
with MMA emerge as strong competitors to the baseline.
They achieve comparable objective values both before and
after thresholding, and, in many cases, converge as quickly
or faster. This finding challenges the common perception
8  Convergence is defined as the iteration at which the objective value
stabilizes, i.e., when the optimizer achieves an objective value within
a percentage (here set to 5%) of its corresponding best.

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 11 of 26  213

that MMA is unsuitable for optimizing neural networks. We
hypothesize that the nearly convex loss landscape associated
with CNNs facilitates this synergy.

Furthermore, for the MBB, bridge, and tensile test cases
considered during benchmarking, we analyzed the robust-
ness of each method to hyperparameters, as shown in Fig. 7
using box plots. These box plots illustrate the median, 25%
and 75% quartiles, and outliers, based on hyperparameter
optimization results after excluding divergent cases. The
baseline emerged as the most robust approach, while the
performance of the SIREN was highly sensitive to hyper-
parameter selection. This variability in performance is
also evident when considering the initialization of neural
topology optimization. Despite starting each optimization
run from a nearly uniform output, different runs produced
designs with varying performance. These findings highlight
the high sensitivity of neural TO—particularly when using
randomly chosen networks—to both initialization and hyper-
parameter selection.

6 � Outlook: going beyond compliance
optimization

Future work will seek to extend neural TO beyond com-
pliance minimization, exploring problems characterized by
highly non-convex objective landscapes and more complex
constraints. Two recent investigations submitted after the
preprint of our article have already initiated this path (Nor-
der et al 2025; Herrmann et al 2024). Norder et al (2025)
demonstrated that neural topology optimization was advan-
tageous in the context of Photonics by designing pentagonal
crystal mirrors for lightsails, while Herrmann et al (2024)
investigated the potential benefits of neural optimization for
an acoustic problem. Our work focuses on structurally sim-
pler problems but aims to provide deeper insight into when
and why neural reparameterization offers advantages and
disadvantages.

Although this is beyond the scope of this work, we include
in this section two additional problems—summarized in

Fig. 6   Performance profiles showing a Median performance across
six different network initializations; and b Best performance. For all
methods, the profiles compare the best objective value attained during
optimization (left column), the number of iterations to convergence
(middle column), and the compliance after thresholding to black-and-
white designs (right column). The plot shows the percentage of test

cases (ordinates) where each method achieved results within a toler-
ance (abscissas) of the best-performing method for that case. Neural
TO was carried out using both Adam and MMA optimizers, while the
baseline method only used MMA. All networks have parameters cor-
responding to the a mesh resolution of 576 × 288 elements, and were
pretrained to start with a uniform density distribution

	 S. M. Sanu et al. 213   Page 12 of 26

Figure 8—that may provide additional insights on the per-
formance of neural TO: the area-to-point thermal conduction
optimization, and compliant mechanism design, following
the formulations in Wang et al (2010). While both problems
share a similar framework with compliance minimization
(the heat conduction problem is essentially analogous to it),
they differ in their specific objective functions and physi-
cal parameters (see Sec. E.5). Our results in Fig. 8 show
that neural TO can produce solutions that outperform the
baseline (with sufficient hyperparameter tuning), while also
emphasizing the challenges posed by complex objective
landscapes. Notably, MLPs exhibit a persistent preference
for simpler designs, underscoring their limitations in tack-
ling these problems.

6.1 � Imposing constraints

We are grateful to an anonymous reviewer for suggesting the
inclusion of a brief discussion about imposing non-trivial
constraints in neural TO. While a comprehensive investi-
gation is beyond the scope of this work, we implemented
an Augmented Lagrangian (AL) formulation to address

the stress-constrained optimization problem, following the
formulation proposed by (Verbart et al 2016) (detailed in
appendix (E.5)). The aim is to minimize structural volume
(V) subject to a constraint on maximum allowable stress. We
adopt the standard L-shaped bracket as the benchmark prob-
lem (Fig. 13) and use the lower-bound Kreisselmeier–Stein-
hauser (KS) function for constraint aggregation.

To enforce the stress constraint, we employ the adap-
tive AL method introduced by Basir and Senocak (2022),
originally developed for training physics-informed neural
networks. This approach is applied consistently across all
parameterizations, with hyperparameters tuned individually
for each case. The resulting optimization histories, physi-
cal designs, and stress fields (from finite element analysis)
are shown in Fig. 9. While the method produces realistic
structures and yields comparable objective values for most
parameterizations (with the exception of the MLP), exact
constraint satisfaction remains challenging, requiring many
optimizer iterations and extensive hyperparameter tuning. A
more thorough investigation is needed to understand these
limitations and to develop robust methods for incorporat-
ing complex constraints into neural topology optimization
frameworks.

Fig. 7   Robustness to hyperparameter selection when Adam is used
for optimizing the networks. The box plots show the variation in the
compliance c as hyperparameters are varied for the different models.

The outliers are marked while the median (middle of the box) and the
25% and 75% quartiles are shown (box’s ends)

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 13 of 26  213

Fig. 8   Comparing neural TO’s performance (optimized with Adam)
against baseline on compliant mechanism design (a) and thermal con-
duction (b) problems. For the NNs, multiple curves correspond to
optimizations from six different random starting points. Note that all
networks are pretrained to generate uniform gray density field. The

plots show the objective value’s evolution with optimization itera-
tion. The best thresholded designs and their objective values are also
shown below the corresponding scheme. Note that hyperparameter
tuning was performed for each method

	 S. M. Sanu et al. 213   Page 14 of 26

7 � Discussion

Neural topology optimization (neural TO) reparameterizes
the decision space, replacing the elemental physical densi-
ties on the finite element mesh with the weights (and biases)
of a neural network. While such change-of-variables strate-
gies are well established in optimization, the use of neu-
ral networks introduces both opportunities and challenges,
which we have sought to highlight in this work to provide
insights for future research.

From a classical optimization standpoint, neural TO may
seem counterintuitive. Traditional TO methods often aim to
convexify the design problem to improve convergence and
robustness. In contrast, introducing a neural network as a
parameterization typically makes the optimization landscape

more non-convex, especially in problems that are otherwise
nearly convex—such as compliance minimization. We observed
this across all three neural network architectures studied. The
degree of distortion, however, depended strongly on the net-
work architecture. As a result, neural TO tends to be more
sensitive to initialization and hyperparameters, often requiring
significantly more iterations to reach designs with comparable
objective values to standard density-based methods.

The advantages of neural TO become more pronounced
in highly non-convex problems, where local minima vary
substantially in quality. This view is supported by the find-
ings of Herrmann et al (2024), who had been aware of the
preprint version of this article. They applied neural TO
(referred to as optimization with a neural network ansatz) to
a challenging acoustic design problem and found that neural

Fig. 9   Comparison of neural topology optimization and baseline
methods on a stress-constrained L-shaped bracket problem. First row:
evolution of the augmented Lagrangian (L, bold left axis) and objec-
tive (V, dashed, right axis) as a function of iterations; L may increase
as it balances contributions from the objective and constraints. Third
and fourth rows: final designs, corresponding objective values (with

constraint violations), and stress distributions in regions with material
density above 0.5. All methods use a modified augmented Lagran-
gian (Basir and Senocak 2022) with the lower-bounded KS function
( ΦL ) (Verbart et al 2016), with hyperparameters tuned for fair com-
parison

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 15 of 26  213

parameterization can lead to better-performing designs. They
conjectured that overparameterization may help escape poor
local minima by reducing the likelihood that all gradient
components vanish simultaneously. Here we show definite
proof using the 2D truss problem that reparameterization,
even when the over-parameterization is not severe, creates
access paths to otherwise inaccesible minima by reshap-
ing the landscape. The resulting landscape is determined
by the inductive biases—i.e., the network’s natural prefer-
ence toward representing certain function classes over oth-
ers. This was evident in our expressivity study: MLPs, with
their limited expressivity, consistently produced smoother
(low-frequency) outputs, regardless of parameter count. As
a result, they tended to yield simpler structural layouts across
all tested problems. In contrast, SIRENs were more flex-
ible, capable of representing a broader range of frequencies
and generating both fine and coarse features. However, the
“right” bias is problem-specific. Arbitrarily chosen architec-
tures may underperform—even with tuning—because the
extent to which one can influence a network’s bias by adjust-
ing width or depth alone is limited. For example, Herrmann
et al (2024) reported that using an MLP for certain analytical
functions failed to produce the expected improvements. Our
study provides a clear explanation for this outcome through
the lens of inductive bias and expressivity.

This motivates the need for domain-informed architec-
tures. Many of the networks used in this and related studies
were not designed with TO in mind. CNNs, for instance,
were originally developed for image-processing tasks, and
features like residual connections were added to ease opti-
mization in that context (Li et al 2018). Yet, CNNs in our
study surprisingly performed well even when optimized
using classical methods like MMA. This could be due to
the structural similarity between images and the grid-based
representations of TO designs. These observations suggest
that neural TO could benefit significantly from architectures
specifically designed for structural optimization—ones that
embed properties like connectivity, load-bearing behavior,
or manufacturability directly into the network. Early signs
of this promise are visible in work on domain-informed
reparameterizations (Both et al 2023; Heydaribeni et al
2024; Berzins et al 2024). However, their application to
TO remains underexplored. Future research should aim to
develop and evaluate such architectures, potentially leverag-
ing experience from solved TO problems to guide network
design or initialization. To provide insights into designing
architectures, we introduced simple yet effective analysis
tools, including visualization of objective landscapes, char-
acterization of optimizer trajectories, and measurements
of neural network expressivity. These tools can guide the
design of both neural and density-based TO approaches,
helping researchers identify which architectural choices
improve convergence and solution quality.

Finally, it is important to acknowledge the limitations of
this study. First, empirical performance alone cannot deter-
mine whether neural TO is fundamentally superior or inferior
to conventional methods. The effectiveness of any reparam-
eterization—neural or otherwise—depends on the specific
characteristics of the optimization problem. In line with the
“no free lunch” theorem (Wolpert and Macready 1997), no
single approach can consistently outperform all others across
every problem class. Our objective was not to establish neural
TO as universally better, but rather to understand and artic-
ulate when and why certain neural architectures may offer
advantages—or face limitations—within TO frameworks.
Second, the problems investigated in this study are relatively
small in scale. Future research should assess the scalabil-
ity of neural TO, including its computational and memory
costs, especially when applied to high-resolution or three-
dimensional problems. Third, this work focused mostly on
problems with a simple volume constraint. Reliably enforc-
ing general constraints in neural network-based optimization
is an important challenge, and the Augmented Lagrangian
implementation considered in Section 6.1 needs to be investi-
gated thoroughly in the future. Other formulations for impos-
ing constraints could also be considered. For example, we
experimented with a quadratic penalty method but found it
to be highly dependent on the starting penalty value and its
increment. We conjecture that neural TO is better suited for
penalty or augmented Lagrangian methods because it lever-
ages standard unconstrained optimizers, but we also showed
that MMA can be used in neural TO. Still, we expect that the
unconstrained optimizers that are commonly used in neural
network training are better suited for neural TO. Overall, the
development of effective and scalable constraint-handling
techniques will be critical to advancing neural TO for more
complex and realistic applications.

Appendix A Two‑variable stress‑constrained
problem

We adopt the following problem formulation (Verbart et al
2016):

where the unscaled stress constraint is gi =
|�i|
�max

− 1 , and
�max = 1 is the allowable stress. The objective is to find the
values of A1 and A2 that minimize F according to these con-
straints. The global optimum is known to be at A1 = 1 and
A2 = 0 , which is a point difficult to reach with

(A1)

�⋆ = argmin
�=(A1,A2)∈ℝ

2

F
(
A1,A2

)
= 0.6A1 + 0.8A2,

such that ḡi =
(

Ai

2

)
gi ≤ 0,

0 ≤ Ai ≤ 2, i ∈ {1, 2},

	 S. M. Sanu et al. 213   Page 16 of 26

gradient-based optimizers in this decision space (recall
Fig. 2b). To solve this constrained optimization problem, we
used the method of moving asymptotes (MMA Svanberg
(2002)) as the optimizer, with a move limit parameter
m = 2.0 and the asymptote initialization a = 0.1 . We tried
different values for these parameters by performing hyper-
parameter optimization (including other starting points) but
all of them converged to the local minimum at (0, 1).

We then reformulated this problem as a neural TO exam-
ple considering the smallest NN that reparameterizes the
original two-dimensional decision space ( A1 and A2 ) into
a three-dimensional decision space ( �1 = W1 , �2 = W2 and
�3 = W3 ) corresponding to the three weights of the NN
(Fig. 2c). The NN architecture has only 4 neurons: a fixed
input neuron z1 = 0.5 , a single hidden layer neuron with a
parametric sine activation function of the form sin

(
�0�1z1

)
 ,

and two output neurons that yield A1 and A2 . We can write
this explicitly as: Ai = sin

(
�i+1 sin

(
�0�1z1

))
+ 1 , for

i = {1, 2} , where �0 is the frequency hyperparameter. We
also use MMA as the optimizer, and its hyperparameters
(including the bounds for the variables), together with the
frequency parameter �0 were tuned using the Tree-struc-
tured Parzen Estimator (TPE) algorithm implemented in
Optuna (Akiba et al 2019) so as to attain the global optimum
for the original problem. For the results shown in the main
text we used m = 0.31 , a = 0.1 , �0 = 88 , and the bounds
on � were set to [−3, 3]9. It is worth noting that we could
find many hyperparameters that converged to the global
optimum. Interestingly, for one such set of hyperparameters
( m = 0.4 , a = 0.3 , �0 = 40 , and bounds [−11, 11] ), the neu-
ral reparameterization converged in three iterations (see SI).

Landscape plots (Fig. 2 in main text)

For clarity here we explain how the figure in the main text
was constructed. Sec. 1 of SI contains the analytical equa-
tions of the transformed constraint equations after reparam-
eterization. It is interesting to note that each constraint now
has two branches and there exists an infinite number of con-
straints for different choices of c ∈ ℤ (the set of all integers).
These branches are shown in the figure with dashed and
continuous lines, where lines of the same color represent
the same constraint boundary. Additionally, the axes, which
were also part of the constraint boundaries ( Ai = 0 ), after
transformation, have been represented with dotted lines. We
can get equations with similar characteristics for the other
planes, i.e., branching into two solutions and being infinitely
periodic. However, their expressions are more cluttered,
so they are not shown here for brevity but are plotted in

Fig. 10a. It should be noted that the global optimum must lie
on the constraint boundary and is marked on all three planes
with �g . In Fig. 2e of the main document, these boundaries
are plotted over a much smaller range and were identified
empirically from data10.

Fig. 10b reconstructs parts of the main document figure to
explain how the optimizer can access the global constrained
optimum in the neural space. On the left, the original decision
space is shown schematically, highlighting the 1-D feasible
subspace to the global optimum along A2 = 0 . The middle
figure presents a scatter plot of a region around the optimum,
where marker sizes are proportional to the constraint viola-
tion. Values below 10−7 are treated as feasible (markers disap-
pear), while violations above 10−5 are considered completely
infeasible. Between these values, marker sizes scale loga-
rithmically to the maximum size, resulting in a nearly sharp
transition at the meeting point of the two branches of ḡ2 = 0 .
Here, the thin linear subspace is barely visible.

For the same plot settings (including the density of scat-
tered points), the �3 − �2 plane in the neural space (right)
shows a seemingly broader feasible region. However, the
analytical plot of the constraint boundaries of the same plane
(focusing on the inset at the top-right corner) shows that the
only access is along the horizontal dotted line (correspond-
ing to A2 = 0)11. Thus, while the feasible access is math-
ematically still one-dimensional, the neural reparameteriza-
tion induces a “constraint relaxation” (similarly to what is
discussed by Verbart et al (2016)), creating a surrounding
region with negligible constraint violation, thereby facili-
tating access to the optimum. We made the same plots by
lowering the threshold for feasibility (from 10−7 to 10−10 ) and
observed no changes.

Appendix B Neural network architectures

The first neural network architecture chosen for this work
is the multi-layer perceptron (MLP), where the outputs of
neurons in a given layer are connected to all neurons of
the next layer (see Fig. 2 of SI). Although similar fully-
connected networks have been used by others (Deng and
To 2020; Zehnder et al 2021; Mai et al 2022; Jeong et al
2023; Qian et al 2022), we adopt the specific structure cho-
sen by Chandrasekhar and Suresh (2020), which has five
hidden layers. Each hidden layer performs batch normaliza-
tion (Ioffe and Szegedy (2015)(see Sec.2 of SI) and applies

9  MMA requires bounds on the decision variables for optimization.
Since neural weights are unbounded, we have to restrict their range.
The choice of bounds is an important hyperparameter.

10  A uniform grid is constructed, and the constraint functions are
evaluated at each node. The boundaries are then identified from this
data using a marching cubes algorithm.
11  The reader is reminded that the region inside the ellipses is infeasi-
ble, except for this line.

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 17 of 26  213

Leaky-ReLU nonlinear activation � = max (0.01l, l) , where
the max function is applied element-wise.

Although MLPs are universal approximators, they suffer
from spectral bias and struggle to represent high-frequency
features. To address this, either input coordinates can be
projected using random Fourier features (RFFs) or sinusoi-
dal activation functions can be used. Chandrasekhar and
Suresh (2022) used RFFs for length-scale control in topol-
ogy optimization. Using the same fully connected architec-
ture but with a sine activation function results in SIREN net-
works (Sitzmann et al 2020). In our study, we chose SIRENs
for their structural similarity to MLPs and their memory effi-
ciency. This choice does not impact generality, as SIRENs
have been shown to be equivalent to RFF-MLPs (Benbarka
et al 2022). A hidden layer of a SIREN takes the input and
applies the transformation sin

(
�0(Wl + b)

)
 , where �0 is a

hyperparameter that dictates the highest frequencies that can

be represented. The coordinates of the centers of the finite
elements xi are given as inputs to the network and their cor-
responding density values �

(
xi

)
 are retrieved from the net-

work. For a 2-D finite element mesh, this mapping can be
written as �i = h

(
�; xi

)
∶ ℝ

2
→ ℝ.

Finally, we also consider a convolutional NN (CNN),
an architecture widely used for image processing. Specifi-
cally, for this study we use the decoder-type architecture
adopted by Hoyer et al (2019) and by Zhang et al (2021),
which takes as input a vector z ∈ ℝ

n to generate the physi-
cal density field � . The input vector—whose dimension n
is an architectural choice, often chosen such that it is less
than the number of image pixels—is treated as a trainable
parameter and is randomly initialized; the CNN’s mapping
� = h(�; z) ∶ ℝ

n
→ ℝ

N , yields the full density field of the
finite element discretization. Here, N = Nx × Ny , with Nx
and Ny denoting the number of finite elements along their

Fig. 10   a Analytical constraint boundaries in the neural space
at three orthogonal planes intersecting the global optimum
( �⋆ = (−1.272, 0,−2.901) ) found by the MMA optimizer. Dashed
and continuous lines of the same color designate the two branches.
Dotted lines represent the transformed equations Ai = 0 ; b Illustra-
tion of how the original 1-D degenerate subspace to the global mini-
mum is transformed in the neural space. The original decision space

is shown on the left (the degenerate subspace has been enlarged for
clarity), while the middle figure provides a zoomed-in view of the
degenerate subspace (actual scatter plot). The figure on the right
shows the same subspace in the neural space. Both plots have the
same density of points, and the marker sizes are proportional to the
constraint violation

	 S. M. Sanu et al. 213   Page 18 of 26

respective Cartesian directions. Unlike MLPs and SIRENs,
the CNN architecture (see Fig. 2 of SI) depends on the mesh
resolution, i.e., once the architecture is chosen, the resulting
design is fixed in size. Therefore, to generate a larger resolu-
tion design, the number of CNN parameters has to be scaled
up (similarly to the baseline). As opposed to the architecture
used by Hoyer et al (2019); Zhang et al (2021) that had 5
hidden layers, we limit the number of hidden layers to two.
Additionally, in experiments designed to match the number
of parameters of the CNN architecture to that of the baseline,
we set the number of convolutional channels as well as the
dimension of z to 1, and used only three convolution filters:
two in the first hidden layer and one in the last.

Other choices were made to make fair comparisons:
We do not use continuation schemes for the SIMP penalty
factor. Furthermore, although NNs become more expres-
sive either through increasing the number of hidden layers
(depth) (Lu et al 2017) or the number of neurons per layer
(width) (Hornik et al 1989), we chose the latter and fixed the
depth for all experiments. All networks were implemented
in JAX (Bradbury et al 2018) using the Haiku library (Hen-
nigan et al 2020), within our in-house topology optimization
library.

B.1 Volume constraint enforcement

Most publications that use reparameterization (e.g., Chan-
drasekhar and Suresh (2020, 2022) among others) either
use quadratic penalty or augmented Lagrangian meth-
ods to convert the constrained optimization problem to
an unconstrained one, thereby enabling common opti-
mizers in machine learning to be used. However, these
introduce additional hyperparameters, such as the initial
penalty value, its increment magnitude per iteration, and
the criterion used to increase the penalty value. Setting
these hyperparameters appropriately can be challenging.
Instead, we either use MMA as the optimizer for the neural
TO—for which enforcing the volume constraint is straight-
forward—or when using Adam as the optimizer we enforce
the volume constraint through the shifted-sigmoid strat-
egy (Hoyer et al 2019). The latter applies a parametric-
sigmoidal transformation on the outputs of the network at
each iteration of the optimization process. Briefly, we use
the following sigmoid function:

where the output of the network (i.e., 𝝆̃ ) is transformed
into physical densities bounded between 0 and 1. The
scalar parameter b shifts the output to ensure the vol-
ume constraint is enforced exactly at every iteration, i.e.,
g0(�) = V0 . This converts the original constrained problem

𝜌i =
1

1 + exp(𝜌̃i−b(𝝆̃,V0))
,

into an unconstrained one, allowing the use of common
ML optimizers. The value of b depends on the output and
the required volume fraction, and it is determined using a
bisection algorithm (within an error of 10−12 ). For the neural
networks, we obtained smoother results when this operation
was carried out after the density filtering. We note that this
technique is similar to the volume-preserving threshold-
ing filter of Xu et al (2009), except that the smoothness of
the projection is not controllable. However, we found our
approach to be more robust, as the bisection algorithm suc-
cessfully found roots for all tested cases without failure.

Appendix C Landscape analysis

Algorithm 1   Loss landscape visualization using linear
interpolation

Table 1   Maximum mean square error during optimization (Eq. (3))
for loss landscape visualization

Baseline MLP SIREN CNN

Tensile ( p = 1) 6.6 × 10
−8

5.6 × 10
−5

1.4 × 10
−5 3.9 × 10

−7

Michell ( p = 1) 9.6 × 10
−8

7.3 × 10
−5

3.3 × 10
−5

2.5 × 10
−5

Tensile ( p = 3) 7.2 × 10
−8

5.6 × 10
−5

3.4 × 10
−5 3.9 × 10

−7

Michell ( p = 3) 1.6 × 10
−7

5.6 × 10
−5

1 × 10
−5 4.2 × 10

−4

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 19 of 26  213

C.1 Visualization

The algorithm for generating the 1-D loss landscape plots
is detailed in Alg. 1. Additionally, the errors obtained
after solving the optimization problem in Eq. (3) using
the L-BFGS optimizer are presented in Table 1, while the
designs produced by the network after optimization are
illustrated in Fig. 11. Additional plots for more cases are
provided in the SI for brevity.

C.2 Trajectory analysis

Fig. 12 presents the metrics analyzed along the optimizer’s
trajectory for all models, test problems (tensile and Michell),
and optimizers (MMA and Adam).

Appendix D Expressivity study

The results of this expressivity study are summarized in
Fig. 5 of the main text. We also considered the CNN used
by Hoyer et al (2019), that even though is over-parameter-
ized by approximately 120 times, it achieved similar PSNR
values (71, 74, 75, and 74 for all four resolutions) 12. SI
contains information on the exact architectures used in this
study.

Appendix E Topology optimization details

For all the boundary value problems considered in this study
(see Fig. 13), Young’s moduli were set at 10−9 for the void
and 10 for the material, and Poisson’s ratio was set to 0.3;

plane stress conditions were assumed. For solving the finite
element discrete system of equations, a direct LU solver was
used. We use the Python implementation of MMA from
Deetman (2024).

E.1 Initialization

The baseline is initialized with a uniform density field, where
each pixel is set to the target volume fraction. To be consist-
ent with the baseline and to start the optimization from a
feasible point, we trained the NNs’ parameters to generate
a uniform gray density distribution before starting topology
optimization (Zhang et al 2021). This can be achieved by
solving Eq. (3), by setting �i = V0 . This pretraining was per-
formed with 300 iterations of Adam (Kingma and Ba 2015)
(with a default learning rate of 0.001), yielding errors lower
than 10−4 . Noteworthy, the cost of this operation is negligible
since neither the expensive finite element analysis nor the
adjoint analysis is conducted.

E.2 Thresholding designs

To obtain black-and-white designs—i.e., density values of
either 0 or 1 for all finite elements—we use the algorithm
described by Sigmund (Sigmund 2022). Briefly, if the num-
ber of elements/pixels is N, then the design is flattened and
sorted in descending order based on the densities. Then, the
number of pixels to be set to black Np is obtained by

where V0 is the target volume fraction. Then, the discrete
design is obtained by setting the first Np values to 1 and all
others to 0.001 (Sigmund 2022). If the volume fraction
changes slightly, a new compliance value can be calculated

(E2)Np =
N
(
V0 − 0.001

)

1 − 0.001
,

Fig. 11   The physical densities obtained for the Michell test case after solving Eq. (3) for the reference point (corresponding to the solution of the
baseline)

12  These results are not shown in Fig. 5 because the number of
parameters is much larger than those of the other CNN networks con-
sidered.

	 S. M. Sanu et al. 213   Page 20 of 26

as cnew = cth ×
Vth

V0

 , where cth is the compliance value of the
thresholded design with a volume fraction Vth , which
(slightly) violates the target volume fraction V0 . Typical
designs after thresholding are shown in SI.

E.3 Hyperparameter tuning

We tuned the hyperparameters only at the lowest resolution
( 64 × 32 ) by performing 60 iterations with the optimizer,
and used the hyperparameters that minimized the compli-
ance for the optimization at higher resolutions. The hyper-
parameters chosen for the different methods were:

Fig. 12   Comparison of optimizer’s trajectory on the neural landscape
against the conventional landscape (with penalization p = 3 and tar-
get volume fraction of 60%). The first column shows the compliance
c normalized by the baseline solution c⋆ and volume fraction V, as
functions of the optimization iteration; the last column is the normal-

ized compliance along interpolation between initial and final designs.
The size of the dots indicate the amount of constraint violation; the L2
-norm of the objective gradient and the angle between successive gra-
dient vectors at each point along the optimizer’s trajectory are shown
in the middle two columns

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 21 of 26  213

1.	 MMA

•	 Move limit m;
•	 Asymptote initialization a;
•	 Bounds on decision variables b (only for training

neural networks)

2.	 Adam

•	 Learning rate �;
•	 Gradient clipping value gc (i.e., scaling of the gradi-

ent vector if its norm is above this value).

In addition to these optimizer-specific hyperparameters,
SIREN has an additional hyperparameter �0 , which con-
trols the frequencies that can be learned. All hyperparam-
eters were tuned with the Optuna package (Akiba et al 2019)
using the TPE algorithm. For the test cases used in the
landscape visualization, the best hyperparameter values were
obtained after 25 outer iterations.

E.4 Performance profiles

Performance profiles (Dolan and Moré 2002) are used for
statistically comparing s solvers (or methods) on t test cases.
To construct a performance profile, the performance ratio for
solver i on case j is defined as

where M is any scalar metric of interest (e.g., best objective
value, converged iteration, or compliance of the thresholded
design) that is to be compared. This ratio indicates the per-
formance relative to the best solver for that particular case.
Next, the solver is treated as a “winner” for a particular case
if its performance is within a tolerance of the best solver
according to the following function:

where � ≥ 1 is the tolerance factor. If � = 1 , the allowable
error is 0%, and only one solver is allowed to be the win-
ner for a given test case. With increasing tolerance (from
1 → ∞ ), multiple solvers may qualify as winners. The
performance profile is then the evolution of the percentage
of test cases where the solver is a winner as the tolerance

rij =
Mij

min(M1j,M2j,⋯ ,Mnj)
, Mij ≥ 0,

(E3)k(rij, �) =

{
1 rij ≤ �,

0 otherwise,

Fig. 13   Different boundary value problems used in this study. All
loads are distributed (not concentrated) across a finite length. For
the bridge case, the top few elements have been designated as a non-
design domain with a constant material density of 1.0. For the
L-shaped bracket, a square non-design region spanning 60% of the
design area was set to have a constant material density of 0

▸

	 S. M. Sanu et al. 213   Page 22 of 26

is relaxed. Thus, the performance profile for the ith solver
is given by

which denotes the probability that the solver’s performance
is within a factor � of the best possible performance for all
test cases. For all plots showing performance profiles, the
allowed tolerance (in %) is used as the abscissas instead of �.

E.5 Extension to other problems

Section 6 included two additional problems where we tested
neural TO: thermal conduction optimization, and compli-
ant mechanism design. Here, we provide additional details
for replication of the results, and we also include another
example involving stress-constrained volume minimization
in appendix (E.5). The first two problems are structurally
similar to compliance minimization in that they involve
volume constraints, which are relatively straightforward to
enforce. In contrast, the stress-constrained formulation intro-
duces significant challenges, which we discuss in greater
detail in appendix (E.5).

E.5.1 Volume‑constrained problems: thermal compliance,
and compliant mechanism design

For the thermal conduction problem, the goal is to optimize
the material distribution to efficiently dissipate heat from
a design domain to a sink. The material conductivity is set
to 1.0, while the void or non-material regions have a con-
ductivity of 0.001. The objective function F is expressed
as F = P

⊺
U , where P = F represents the unit thermal load

distributed throughout the domain. For this problem we set
the target volume to V0 = 30%.

For the compliant mechanism design problem, the objec-
tive is to construct a mechanism where the force applied at
the top-left node of the domain yields the maximum negative
displacement at the top-right node. Here, the input spring
stiffness ( kin ) and input force are both set to 1, while the
output spring stiffness ( kout ) is set to 0.001. All entries in
vector P are zeros except for the one corresponding to the
output degree of freedom (the top-right node), which is set
to one. The target volume is set to V0 = 40%.

We follow the same procedure as with compliance mini-
mization, i.e., pretraining to uniform density initialization,
hyperparameter tuning at 64 × 32 resolution, and testing at
544 × 272.13 The results, as well as schematics of the bound-
ary conditions, are shown in Fig. 8. We only used Adam as

(E4)pi(�) =

∑
j k(rij, �)

m
,

the optimizer since it was better than MMA for the compli-
ance-minimization problem.

E.5.2 Stress‑constrained optimization

We consider the following optimization problem from Ver-
bart et al (2016):

where the objective is to minimize the structural mass, and
Ψ is an aggregation function that combines the element-wise
local stress constraint values ḡi into a single global con-
straint. Each local constraint is defined as ḡi = 𝜌i

(
𝜎i

𝜎max
− 1

)
,

where �i denotes the von Mises stress at the centroid of the
ith element. Note that the stress is computed assuming the
full (solid) Young’s modulus, rather than interpolated stiff-
ness, to better reflect physical fidelity, i.e., we use the micro-
scopic stress definition instead of the homogenized stress.
We set the allowable stress limit to �max = 0.75 with the
force applied being 2.014, distributed over 5 nodes. The
choice of aggregation function Ψ significantly influences the
optimization results. We consider the lower-bounded Kreis-
selmeier–Steinhauser (KS) function (ΨL) (Verbart et al
2016):

where the parameter P controls the smoothness and close-
ness to the true maximum function—larger values of P
result in a tighter approximation. We set P = 10 in all our
experiments. The square domain was discretized with a
N = 96 × 96 regular mesh, with each element having unit
dimensions. All other settings were kept similar to Verbart
et al (2016).

As MMA has shown limited robustness even for enforc-
ing simple volume constraints in neural TO, we adopt an
alternative strategy: the augmented Lagrangian (AL) method
(see Byrd et al (1994) for further details). The augmented
Lagrangian function is defined as

(E5)

�⋆ = argmin
�∈D

V =
1

V0

N∑

i=1

vi𝜌i,

such that g0(�) = Ψ(ḡi) ≤ 0,

KU(�) = F,

0 ≤ 𝜌i ≤ 1,

i = {1,… ,N},

(E6)ΨL(ḡi) =
1

P
ln

(
1

N

N∑

i=1

exp(Pḡi)

)
,

(E7)L = V + �g0 + �g2
0
,

13  Since the thermal problem has a square domain, we use the same
number of elements for x and y directions i.e., we test at 544 × 544
mesh resolution 14  All values in standard units

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 23 of 26  213

 where � and � are dual variables with the same dimension-
ality as the number of constraints. The AL method consists
of two nested updates: in the inner loop, the design vari-
ables are updated for fixed dual variables to minimize the
AL function; in the outer loop, the dual variables are updated
based on constraint violations. Initially, constraint viola-
tions are penalized lightly, but the penalization increases
with infeasibility. As a result, the AL objective may increase
during early iterations. Once constraints become feasible (or
active, in the case of equality constraints), their contribution
to the AL vanishes.

In our study, we employ the Adam optimizer for the
inner updates, with gradient clipping applied: if the gradi-
ent norm exceeds a predefined threshold, it is rescaled to
this threshold, a standard practice in neural network training
to enhance stability. To further improve the robustness of
AL in the context of neural networks, we adopt the adap-
tive dual update scheme proposed in Basir and Senocak
(2022), governed by two tunable hyperparameters � and �
. The parameter α introduces a momentum-like effect by
applying an exponentially weighted average to the squared
constraint term. This running history is then combined with
the hyperparameter γ, which plays a similar role to a learn-
ing rate, to update the penalty (μ). Finally, as in the standard
AL method, the Lagrange multiplier (λ) is updated using the
calculated penalty.

Hyperparameters for the outer optimization (e.g., � and
� ), Adam’s learning rate, the number of inner steps, and the
gradient clipping threshold are tuned individually for each
method; the tuned values are shown in Table 2. To evalu-
ate constraint-handling capability, we consider an L-shaped
bracket under stress constraints and optimize both the stand-
ard SIMP parameterization and three neural parameteriza-
tions using the modified AL framework.

While the AL method offers an alternative to MMA,
it comes with its own limitations. As formulated, the AL

method is primarily suited for equality constraints. Although
slack variable formulations could extend its applicability
to inequality constraints, such extensions require further
research. Additionally, the AL method typically requires
a large number of iterations for convergence, since each
outer iteration involves an inner optimization loop of 50-60
steps. The method is also highly sensitive to hyperparameter
choices, making it less robust in practical settings.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s00158-​025-​04135-3.

Acknowledgements  M.A.B. acknowledges the generous support by the
Office of Naval Research through Grant No. N00014-21-1-2670. All
authors sincerely thank Prof. Fred van Keulen, Prof. Mathijs Langelaar,
Dr. Stijn Koppen, and Dr. Dirk Munro from the Mechanical Engineer-
ing faculty at TU Delft for the fruitful discussions and valuable feed-
back provided. S.M.S. appreciates the efforts of the Bessa research
group members for proofreading and pointing out corrections, with
special thanks to Gaweł Kus, Igor Kuszczak, and Shunyu Yin for their
discussions regarding topology optimization.

Author contributions  Alejandro Marcos Aragón and Miguel Anibal
Bessa contributed to the study’s conception and design. Material prepa-
ration, data collection and analysis were performed by Suryanaray-
anan Manoj Sanu. The first draft of the manuscript was written by
Suryanarayanan Manoj Sanu and all authors commented on previous
versions of the manuscript. All authors read and approved the final
manuscript.

Data Availibility  All key experimental details are provided in the arti-
cle, appendix, and supplementary information. Codes and raw data for
replication are available upon request by contacting the corresponding
authors via email.

Declarations 

Competing Interests  The authors declare no competing interests
(beyond the disclosed funding) relevant to this article.

Replication of results  All details pertaining to the conducted experi-
ments are given in the appendix and the supplementary information
document provided alongside the paper.

References

Aage N, Andreassen E, Lazarov BS et al (2017) Giga-voxel computa-
tional morphogenesis for structural design. Nature 550(7674):84–
86. https://​doi.​org/​10.​1038/​natur​e23911

Akiba T, Sano S, Yanase T, et al (2019) Optuna: A next-generation
hyperparameter optimization framework. In: Proceedings of the
25th ACM SIGKDD international conference on knowledge dis-
covery & data mining, pp 2623–2631

Allen M, Maute K (2005) Reliability-based shape optimization of
structures undergoing fluid-structure interaction phenomena.
Comput Methods Appl Mech Eng 194(30–33):3472–3495. https://​
doi.​org/​10.​1016/j.​cma.​2004.​12.​028

Andreassen E, Clausen A, Schevenels M et al (2011) Efficient topology
optimization in matlab using 88 lines of code. Struct Multidiscip
Optim 43:1–16. https://​doi.​org/​10.​1007/​s00158-​010-​0594-7

Table 2   Hyperparameters used for the stress-constrained L-shaped
bracket problem

� and � are two hyperparameters of the modified AL method, behav-
ing similarly to a learning rate and momentum term for the outer
updates (i.e., updating the Lagrange multipliers). At each multiplier
update, the inner problem is minimized using Adam, requiring n

i
 iter-

ations with learning rate � . To ensure stability, gradients of the inner
problem are clipped by their norm if above g

c
 before being passed to

Adam

Parameterization ALM Adam

� � n
i

� g
c

Baseline 0.6 0.21 61 0.01 ×

MLP 0.7 0.04 51 6.0 × 10
−4 0.01

SIREN 0.6 0.16 61 3.0 × 10
−4 0.01

CNN 0.99 0.02 31 7.7 × 10
−3 0.1

https://doi.org/10.1007/s00158-025-04135-3
https://doi.org/10.1038/nature23911
https://doi.org/10.1016/j.cma.2004.12.028
https://doi.org/10.1016/j.cma.2004.12.028
https://doi.org/10.1007/s00158-010-0594-7

	 S. M. Sanu et al. 213   Page 24 of 26

Banga S, Gehani H, Bhilare S, et al (2018) 3d topology optimization
using convolutional neural networks. arXiv preprint arXiv:​1808.​
07440

Basir S, Senocak I (2022) Physics and equality constrained artificial
neural networks: Application to forward and inverse problems
with multi-fidelity data fusion. J Comput Phys 463:111301.
https://​doi.​org/​10.​1016/j.​jcp.​2022.​111301, https://​www.​scien​cedir​
ect.​com/​scien​ce/​artic​le/​pii/​S0021​99912​20036​31

Benbarka N, Höfer T, Zell A, et al (2022) Seeing implicit neural
representations as fourier series. In: Proceedings of the IEEE/
CVF Winter Conference on Applications of Computer Vision,
pp 2041–2050

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in
structural design using a homogenization method. Comput Meth-
ods Appl Mech Eng 71:197–224. https://​doi.​org/​10.​1016/​0045-​
7825(88)​90086-2

Bendsøe MP, Sigmund O (2004) Topology Optimization. Springer
Berlin Heidelberg. https://​doi.​org/​10.​1007/​978-3-​662-​05086-6

Bendsøe MP, Guedes JM, Plaxton S et al (1996) Optimization of
structure and material properties for solids composed of soften-
ing material. Int J Solids Struct 33(12):1799–1813. https://​doi.​
org/​10.​1016/​0020-​7683(95)​00121-2

Berzins A, Radler A, Volkmann E, et al (2024) Geometry-informed
neural networks. arXiv:​2402.​14009

Biswas A, Shapiro V, Tsukanov I (2004) Heterogeneous material
modeling with distance fields. Computer Aided Geometric
Design 21(3):215–242. https://​doi.​org/​10.​1016/j.​cagd.​2003.​
08.​002

Both C, Dehmamy N, Yu R et al (2023) Accelerating network layouts
using graph neural networks. Nat Commun 14(1):1560. https://​
doi.​org/​10.​1038/​s41467-​023-​37189-2

Bradbury J, Frostig R, Hawkins P, et al (2018) JAX: composable
transformations of Python+NumPy programs. http://​github.​
com/​google/​jax

Buhl T, Pedersen C, Sigmund O (2000) Stiffness design of geometri-
cally nonlinear structures using topology optimization. Struct
Multidiscip Optim 19(2):93–104. https://​doi.​org/​10.​1007/​s0015​
80050​089

Byrd RH, Nocedal J, Schnabel RB (1994) Representations of quasi-
newton matrices and their use in limited memory methods.
Math Program 63(1–3):129–156

Chandrasekhar A, Suresh K (2020) Tounn: Topology optimization
using neural networks. Struct Multidiscip Optim 63(3):1135–
1149. https://​doi.​org/​10.​1007/​s00158-​020-​02748-4

Chandrasekhar A, Suresh K (2022) Approximate length scale filter in
topology optimization using fourier enhanced neural networks.
Comput Aided Des 150(C). https://​doi.​org/​10.​1016/j.​cad.​2022.​
103277

Chen W, Xia L, Yang J et al (2018) Optimal microstructures of elas-
toplastic cellular materials under various macroscopic strains.
Mech Mater 118:120–132

Cheng G, Jiang Z (1992) Study on topology optimization with stress
constraints. Eng Optim 20(2):129–148. https://​doi.​org/​10.​1080/​
03052​15920​89412​76

Chi H, Zhang Y, Tang TLE et al (2021) Universal machine learning
for topology optimization. Comput Methods Appl Mech Eng
375. https://​doi.​org/​10.​1016/j.​cma.​2019.​112739

Danilova M, Dvurechensky P, Gasnikov A, et al (2022) Recent
Theoretical Advances in Non-Convex Optimization, Springer
International Publishing, pp 79–163. https://​doi.​org/​10.​1007/​
978-3-​031-​00832-0_3

Deetman A (2024) Gcmma-mma-python: Python code of the method
of moving asymptotes

Deng H, To AC (2020) Topology optimization based on deep repre-
sentation learning (drl) for compliance and stress-constrained

design. Comput Mech 66(2):449–469. https://​doi.​org/​10.​1007/​
s00466-​020-​01859-5

Dolan ED, Moré JJ (2002) Benchmarking optimization software with
performance profiles. Math Program 91(2):201–213. https://​doi.​
org/​10.​1007/​s1010​70100​263

Doosti N, Panetta J, Babaei V (2021) Topology optimization via
frequency tuning of neural design representations. In: Proceed-
ings of the 6th Annual ACM Symposium on Computational
Fabrication. Association for Computing Machinery, New York,
NY, USA, SCF ’21, https://​doi.​org/​10.​1145/​34851​14.​34851​24

Dupuis B, Jacot A (2021) Dnn-based topology optimisation: Spatial
invariance and neural tangent kernel. Adv Neural Inf Process
Syst 34:27659–27669

Duysinx P, Bendsøe MP (1998) Topology optimization of continuum
structures with local stress constraints. Int J Numer Meth Eng
43(8):1453–1478

Fritzen F, Xia L, Leuschner M et al (2016) Topology optimization of
multiscale elastoviscoplastic structures. Int J Numer Meth Eng
106(6):430–453

Goodfellow IJ, Vinyals O (2015) Qualitatively characterizing neural
network optimization problems. In: Bengio Y, LeCun Y (eds) 3rd
International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, arXiv:​abs/​1412.​6544

Guo X, Zhang W, Zhong W (2014) Doing topology optimization
explicitly and geometrically—a new moving morphable com-
ponents based framework. Journal of Applied Mechanics 81(8).
https://​doi.​org/​10.​1115/1.​40276​09

Halle A, Campanile LF, Hasse A (2021) An artificial intelligence-
assisted design method for topology optimization without pre-
optimized training data. Appl Sci 11(19):9041. https://​doi.​org/​
10.​3390/​app11​199041

Hennigan T, Cai T, Norman T, et al (2020) Haiku: Sonnet for JAX.
http://​github.​com/​deepm​ind/​dm-​haiku

Herrmann L, Sigmund O, Li VM, et al (2024) On neural networks for
generating better local optima in topology optimization. Struc-
tural and Multidisciplinary Optimization 67(11). https://​doi.​org/​
10.​1007/​s00158-​024-​03908-6

Heydaribeni N, Zhan X, Zhang R et al (2024) Distributed constrained
combinatorial optimization leveraging hypergraph neural net-
works. Nature Machine Intelligence 6(6):664–672. https://​doi.​
org/​10.​1038/​s42256-​024-​00833-7

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward
networks are universal approximators. Neural Netw 2(5):359–366.
https://​doi.​org/​10.​1016/​0893-​6080(89)​90020-8

Hoyer S, Sohl-Dickstein J, Greydanus S (2019) Neural reparameteriza-
tion improves structural optimization. In: NeurIPS 2019 Work-
shop on Solving Inverse Problems with Deep Networks

Ioffe S, Szegedy C (2015) Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. In: International
conference on machine learning, pmlr, pp 448–456

Jeong H, Batuwatta-Gamage C, Bai J et al (2023) A complete physics-
informed neural network-based framework for structural topol-
ogy optimization. Comput Methods Appl Mech Eng 417:116401.
https://​doi.​org/​10.​1016/j.​cma.​2023.​116401

Kallioras NA, Lagaros ND (2020) Dl-scale: a novel deep learning-
based model order upscaling scheme for solving topology optimi-
zation problems. Neural Comput Appl 33(12):7125–7144. https://​
doi.​org/​10.​1007/​s00521-​020-​05480-8

Kallioras NA, Kazakis G, Lagaros ND (2020) Accelerated topology
optimization by means of deep learning. Struct Multidiscip Optim
62(3):1185–1212. https://​doi.​org/​10.​1007/​s00158-​020-​02545-z

Kingma DP, Ba J (2015) Adam: A method for stochastic optimization.
In: Bengio Y, LeCun Y (eds) 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, arXiv:​abs/​1412.​6980

http://arxiv.org/abs/1808.07440
http://arxiv.org/abs/1808.07440
https://doi.org/10.1016/j.jcp.2022.111301
https://www.sciencedirect.com/science/article/pii/S0021999122003631
https://www.sciencedirect.com/science/article/pii/S0021999122003631
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1007/978-3-662-05086-6
https://doi.org/10.1016/0020-7683(95)00121-2
https://doi.org/10.1016/0020-7683(95)00121-2
http://arxiv.org/abs/2402.14009
https://doi.org/10.1016/j.cagd.2003.08.002
https://doi.org/10.1016/j.cagd.2003.08.002
https://doi.org/10.1038/s41467-023-37189-2
https://doi.org/10.1038/s41467-023-37189-2
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.1007/s001580050089
https://doi.org/10.1007/s001580050089
https://doi.org/10.1007/s00158-020-02748-4
https://doi.org/10.1016/j.cad.2022.103277
https://doi.org/10.1016/j.cad.2022.103277
https://doi.org/10.1080/03052159208941276
https://doi.org/10.1080/03052159208941276
https://doi.org/10.1016/j.cma.2019.112739
https://doi.org/10.1007/978-3-031-00832-0_3
https://doi.org/10.1007/978-3-031-00832-0_3
https://doi.org/10.1007/s00466-020-01859-5
https://doi.org/10.1007/s00466-020-01859-5
https://doi.org/10.1007/s101070100263
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/3485114.3485124
http://arxiv.org/abs/abs/1412.6544
https://doi.org/10.1115/1.4027609
https://doi.org/10.3390/app11199041
https://doi.org/10.3390/app11199041
http://github.com/deepmind/dm-haiku
https://doi.org/10.1007/s00158-024-03908-6
https://doi.org/10.1007/s00158-024-03908-6
https://doi.org/10.1038/s42256-024-00833-7
https://doi.org/10.1038/s42256-024-00833-7
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/j.cma.2023.116401
https://doi.org/10.1007/s00521-020-05480-8
https://doi.org/10.1007/s00521-020-05480-8
https://doi.org/10.1007/s00158-020-02545-z
http://arxiv.org/abs/abs/1412.6980

Neural topology optimization: the good, the bad, and the ugly﻿	 Page 25 of 26  213

Kirsch U (1990) On singular topologies in optimum structural design.
Structural Optimization 2(3):133–142. https://​doi.​org/​10.​1007/​
bf018​36562

Kirsch U, Papalambros P (2001) Structural reanalysis for topologi-
cal modifications - a unified approach. Struct Multidiscip Optim
21(5):333–344. https://​doi.​org/​10.​1007/​s0015​80100​112

Kreissl S, Pingen G, Maute K (2011) Topology optimization for
unsteady flow. Int J Numer Meth Eng 87(13):1229–1253. https://​
doi.​org/​10.​1002/​nme.​3151

Le C, Bruns TE, Tortorelli DA (2012) Material microstructure opti-
mization for linear elastodynamic energy wave management. J
Mech Phys Solids 60(2):351–378. https://​doi.​org/​10.​1016/j.​jmps.​
2011.​09.​002

Li H, Xu Z, Taylor G, et al (2018) Visualizing the loss landscape of
neural nets. Advances in neural information processing systems 31

Lu Z, Pu H, Wang F, et al (2017) The expressive power of neural net-
works: A view from the width. Advances in neural information
processing systems 30

Mai HT, Lieu QX, Kang J et al (2022) A novel deep unsupervised
learning-based framework for optimization of truss structures.
Engineering with Computers 39(4):2585–2608. https://​doi.​org/​
10.​1007/​s00366-​022-​01636-3

Min S, Kikuchi N, Park YC et al (1999) Optimal topology design of
structures under dynamic loads. Structural Optimization 17(2–
3):208–218. https://​doi.​org/​10.​1007/​bf011​95945

Nakshatrala PB, Tortorelli DA, Nakshatrala K (2013) Nonlinear struc-
tural design using multiscale topology optimization. part 1: Static
formulation. Comput Methods Appl Mech Eng 261:167–176

Norder L, Yin S, de Jong MH et al (2025) Pentagonal photonic crystal
mirrors: scalable lightsails with enhanced acceleration via neural
topology optimization. Nat Commun 16(1):2753

Papadopoulos IPA, Farrell PE, Surowiec TM (2021) Computing mul-
tiple solutions of topology optimization problems. SIAM J Sci
Comput 43(3):A1555–A1582

Poulsen TA (2002) Topology optimization in wavelet space. Int J
Numer Meth Eng 53:567–582. https://​doi.​org/​10.​1002/​NME.​285

Qian C, Ye W (2020) Accelerating gradient-based topology optimi-
zation design with dual-model artificial neural networks. Struct
Multidiscip Optim 63(4):1687–1707. https://​doi.​org/​10.​1007/​
s00158-​020-​02770-6

Qian W, Xu Y, Li H (2022) A topology description function-enhanced
neural network for topology optimization. Computer-Aided Civil
and Infrastructure Engineering 38(8):1020–1040. https://​doi.​org/​
10.​1111/​mice.​12933

Qian X (2013) Topology optimization in b-spline space. Comput
Methods Appl Mech Eng 265:15–35. https://​doi.​org/​10.​1016/j.​
cma.​2013.​06.​001

Rahaman N, Baratin A, Arpit D, et al (2019) On the spectral bias of
neural networks. In: International conference on machine learning,
PMLR, pp 5301–5310

Raponi E, Bujny M, Olhofer M et al (2019) Kriging-assisted topology
optimization of crash structures. Comput Methods Appl Mech
Eng 348:730–752. https://​doi.​org/​10.​1016/j.​cma.​2019.​02.​002

Rojas-Labanda S, Stolpe M (2015) Benchmarking optimization solv-
ers for structural topology optimization. Struct Multidiscip Optim
52(3):527–547. https://​doi.​org/​10.​1007/​s00158-​015-​1250-z

Rozvany GIN (2009) A critical review of established methods of struc-
tural topology optimization. Struct Multidiscip Optim 37(3):217–
237. https://​doi.​org/​10.​1007/​s00158-​007-​0217-0

Schmidt RM, Schneider F, Hennig P (2021) Descending through a
crowded valley-benchmarking deep learning optimizers. In: Inter-
national Conference on Machine Learning, PMLR, pp 9367–9376

Sigmund O (2022) On benchmarking and good scientific practise in
topology optimization. Struct Multidiscip Optim 65:315. https://​
doi.​org/​10.​1007/​s00158-​022-​03427-2

Sigmund O, Maute K (2013) Topology optimization approaches: A
comparative review. Struct Multidiscip Optim 48:1031–1055.
https://​doi.​org/​10.​1007/​s00158-​013-​0978-6

Sigmund O, Aage N, Andreassen E (2016) On the (non-)optimality
of michell structures. Struct Multidiscip Optim 54(2):361–373.
https://​doi.​org/​10.​1007/​s00158-​016-​1420-7

Silva ECN, Kikuchi N (1999) Design of piezoelectric transducers using
topology optimization. Smart Mater Struct 8(3):350–364. https://​
doi.​org/​10.​1088/​0964-​1726/8/​3/​307

Sitzmann V, Martel JN, Bergman AW, et al (2020) Implicit neural
representations with periodic activation functions. Advances in
Neural Information Processing Systems 2020-December. https://​
doi.​org/​10.​48550/​arxiv.​2006.​09661

Sosnovik I, Oseledets I (2019) Neural networks for topology optimiza-
tion. Russ J Numer Anal Math Model 34(4):215–223

Stanley KO (2007) Compositional pattern producing networks: A
novel abstraction of development. Genet Program Evolvable Mach
8(2):131–162. https://​doi.​org/​10.​1007/​s10710-​007-​9028-8

Stolpe M (2003) On Models and Methods for Global Optimization of
Structural Topology. Matematik, Stockholm

Stolpe M, Svanberg K (2001) An alternative interpolation scheme for
minimum compliance topology optimization. Struct Multidiscip
Optim 22(2):116–124. https://​doi.​org/​10.​1007/​s0015​80100​129

Strümpler Y, Postels J, Yang R, et al (2022) Implicit neural representa-
tions for image compression. In: Computer Vision – ECCV 2022:
17th European Conference, Tel Aviv, Israel, October 23–27, 2022,
Proceedings, Part XXVI. Springer-Verlag, Berlin, Heidelberg, pp
74–91, https://​doi.​org/​10.​1007/​978-3-​031-​19809-0_5

Svanberg K (1987) The method of moving asymptotes–a new method
for structural optimization. Int J Numer Meth Eng 24(2):359–373.
https://​doi.​org/​10.​1002/​nme.​16202​40207

Svanberg K (2002) A class of globally convergent optimization meth-
ods based on conservative convex separable approximations.
SIAM J Optim 12(2):555–573. https://​doi.​org/​10.​1137/​s1052​
62349​93628​22

Ulyanov D, Vedaldi A, Lempitsky VS (2017) Deep image prior. Inter-
national Journal of Computer Vision 128:1867 – 1888. https://​api.​
seman​ticsc​holar.​org/​Corpu​sID:​45310​78

Verbart A, Langelaar M, Fv K (2016) A unified aggregation and
relaxation approach for stress-constrained topology optimization.
Struct Multidiscip Optim 55(2):663–679. https://​doi.​org/​10.​1007/​
s00158-​016-​1524-0

Wang F, Lazarov BS, Sigmund O (2010) On projection methods,
convergence and robust formulations in topology optimization.
Struct Multidiscip Optim 43(6):767–784. https://​doi.​org/​10.​1007/​
s00158-​010-​0602-y

Wang S, Wang MY (2005) Radial basis functions and level set method
for structural topology optimization. Int J Numer Meth Eng
65(12):2060–2090. https://​doi.​org/​10.​1002/​nme.​1536

White DA, Stowell ML, Tortorelli DA (2018) Toplogical opti-
mization of structures using fourier representations. Struct
Multidiscip Optim 58(3):1205–1220. https://​doi.​org/​10.​1007/​
s00158-​018-​1962-y

Woldseth RV, Aage N, Bærentzen JA, et al (2022) On the use of arti-
ficial neural networks in topology optimisation. Structural and
Multidisciplinary Optimization 65(10). https://​doi.​org/​10.​1007/​
s00158-​022-​03347-1

Wolpert DH, Macready WG (1997) No free lunch theorems for opti-
mization. IEEE Trans Evol Comput 1(1):67–82. https://​doi.​org/​
10.​1109/​4235.​585893

Xia L, Breitkopf P (2014) Concurrent topology optimization design
of material and structure within fe2 nonlinear multiscale analy-
sis framework. Comput Methods Appl Mech Eng 278:524–542.
https://​doi.​org/​10.​1016/j.​cma.​2014.​05.​022

Xia L, Da D, Yvonnet J (2018) Topology optimization for maximiz-
ing the fracture resistance of quasi-brittle composites. Comput

https://doi.org/10.1007/bf01836562
https://doi.org/10.1007/bf01836562
https://doi.org/10.1007/s001580100112
https://doi.org/10.1002/nme.3151
https://doi.org/10.1002/nme.3151
https://doi.org/10.1016/j.jmps.2011.09.002
https://doi.org/10.1016/j.jmps.2011.09.002
https://doi.org/10.1007/s00366-022-01636-3
https://doi.org/10.1007/s00366-022-01636-3
https://doi.org/10.1007/bf01195945
https://doi.org/10.1002/NME.285
https://doi.org/10.1007/s00158-020-02770-6
https://doi.org/10.1007/s00158-020-02770-6
https://doi.org/10.1111/mice.12933
https://doi.org/10.1111/mice.12933
https://doi.org/10.1016/j.cma.2013.06.001
https://doi.org/10.1016/j.cma.2013.06.001
https://doi.org/10.1016/j.cma.2019.02.002
https://doi.org/10.1007/s00158-015-1250-z
https://doi.org/10.1007/s00158-007-0217-0
https://doi.org/10.1007/s00158-022-03427-2
https://doi.org/10.1007/s00158-022-03427-2
https://doi.org/10.1007/s00158-013-0978-6
https://doi.org/10.1007/s00158-016-1420-7
https://doi.org/10.1088/0964-1726/8/3/307
https://doi.org/10.1088/0964-1726/8/3/307
https://doi.org/10.48550/arxiv.2006.09661
https://doi.org/10.48550/arxiv.2006.09661
https://doi.org/10.1007/s10710-007-9028-8
https://doi.org/10.1007/s001580100129
https://doi.org/10.1007/978-3-031-19809-0_5
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1137/s1052623499362822
https://doi.org/10.1137/s1052623499362822
https://api.semanticscholar.org/CorpusID:4531078
https://api.semanticscholar.org/CorpusID:4531078
https://doi.org/10.1007/s00158-016-1524-0
https://doi.org/10.1007/s00158-016-1524-0
https://doi.org/10.1007/s00158-010-0602-y
https://doi.org/10.1007/s00158-010-0602-y
https://doi.org/10.1002/nme.1536
https://doi.org/10.1007/s00158-018-1962-y
https://doi.org/10.1007/s00158-018-1962-y
https://doi.org/10.1007/s00158-022-03347-1
https://doi.org/10.1007/s00158-022-03347-1
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1016/j.cma.2014.05.022

	 S. M. Sanu et al. 213   Page 26 of 26

Methods Appl Mech Eng 332:234–254. https://​doi.​org/​10.​1016/j.​
cma.​2017.​12.​021

Xu S, Cai Y, Cheng G (2009) Volume preserving nonlinear density
filter based on heaviside functions. Struct Multidiscip Optim
41(4):495–505. https://​doi.​org/​10.​1007/​s00158-​009-​0452-7

Xue L, Liu J, Wen G, et al (2021) Efficient, high-resolution topology
optimization method based on convolutional neural networks.
Frontiers of Mechanical Engineering 2021 16:1 16:80–96. https://​
doi.​org/​10.​1007/​S11465-​020-​0614-2

Yoon GH (2022) Transient sensitivity analysis and topology optimi-
zation of particle suspended in transient laminar fluid. Comput
Methods Appl Mech Eng 393:114696. https://​doi.​org/​10.​1016/j.​
cma.​2022.​114696

Yoon GH, Kim YY (2005) Element connectivity parameterization for
topology optimization of geometrically nonlinear structures. Int
J Solids Struct 42(7):1983–2009. https://​doi.​org/​10.​1016/j.​ijsol​
str.​2004.​09.​005

Yoon GH, Jensen JS, Sigmund O (2006) Topology optimization of
acoustic-structure interaction problems using a mixed finite
element formulation. Int J Numer Meth Eng 70(9):1049–1075.
https://​doi.​org/​10.​1002/​nme.​1900

Yoon GH, Choi H, Hur S (2018) Multiphysics topology optimization
for piezoelectric acoustic focuser. Comput Methods Appl Mech
Eng 332:600–623. https://​doi.​org/​10.​1016/j.​cma.​2017.​12.​002

Yoshimura M, Shimoyama K, Misaka T et al (2016) Topology optimi-
zation of fluid problems using genetic algorithm assisted by the
kriging model. Int J Numer Meth Eng 109(4):514–532. https://​
doi.​org/​10.​1002/​nme.​5295

Yu M, Ruan S, Wang X et al (2019) Topology optimization of
thermal-fluid problem using the mmc-based approach. Struct

Multidiscip Optim 60(1):151–165. https://​doi.​org/​10.​1007/​
s00158-​019-​02206-w

Zehnder J, Li Y, Coros S, et al (2021) Ntopo: Mesh-free topology
optimization using implicit neural representations. In: Ranzato M,
Beygelzimer A, Dauphin Y, et al (eds) Advances in Neural Infor-
mation Processing Systems, vol 34. Curran Associates, Inc., pp
10368–10381, https://​proce​edings.​neuri​ps.​cc/​paper_​files/​paper/​
2021/​file/​55d99​a37b2​e1bad​ba7c8​df4cc​d506a​88-​Paper.​pdf

Zhang S, Norato JA, Gain AL et al (2016) A geometry projection
method for the topology optimization of plate structures. Struct
Multidiscip Optim 54(5):1173–1190. https://​doi.​org/​10.​1007/​
s00158-​016-​1466-6

Zhang Z, Li Y, Zhou W et al (2021) Tonr: An exploration for a novel
way combining neural network with topology optimization.
Comput Methods Appl Mech Eng 386:114083. https://​doi.​org/​
10.​1016/j.​cma.​2021.​114083

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1016/j.cma.2017.12.021
https://doi.org/10.1016/j.cma.2017.12.021
https://doi.org/10.1007/s00158-009-0452-7
https://doi.org/10.1007/S11465-020-0614-2
https://doi.org/10.1007/S11465-020-0614-2
https://doi.org/10.1016/j.cma.2022.114696
https://doi.org/10.1016/j.cma.2022.114696
https://doi.org/10.1016/j.ijsolstr.2004.09.005
https://doi.org/10.1016/j.ijsolstr.2004.09.005
https://doi.org/10.1002/nme.1900
https://doi.org/10.1016/j.cma.2017.12.002
https://doi.org/10.1002/nme.5295
https://doi.org/10.1002/nme.5295
https://doi.org/10.1007/s00158-019-02206-w
https://doi.org/10.1007/s00158-019-02206-w
https://proceedings.neurips.cc/paper_files/paper/2021/file/55d99a37b2e1badba7c8df4ccd506a88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/55d99a37b2e1badba7c8df4ccd506a88-Paper.pdf
https://doi.org/10.1007/s00158-016-1466-6
https://doi.org/10.1007/s00158-016-1466-6
https://doi.org/10.1016/j.cma.2021.114083
https://doi.org/10.1016/j.cma.2021.114083

	Neural topology optimization: the good, the bad, and the ugly
	Abstract
	1 Formulation
	1.1 Neural topology optimization

	2 Experiment to illustrate the effect of reparameterization
	3 High-dimensional landscape analysis
	3.1 Objective landscape visualization
	3.2 Optimizer trajectories

	4 Expressivity of neural TO
	5 Performance of neural TO
	6 Outlook: going beyond compliance optimization
	6.1 Imposing constraints

	7 Discussion
	Appendix A Two-variable stress-constrained problem
	Landscape plots (Fig. 2 in main text)

	Appendix B Neural network architectures
	B.1 Volume constraint enforcement

	Appendix C Landscape analysis
	C.1 Visualization
	C.2 Trajectory analysis

	Appendix D Expressivity study
	Appendix E Topology optimization details
	E.1 Initialization
	E.2 Thresholding designs
	E.3 Hyperparameter tuning
	E.4 Performance profiles
	E.5 Extension to other problems
	E.5.1 Volume-constrained problems: thermal compliance, and compliant mechanism design
	E.5.2 Stress-constrained optimization

	Acknowledgements
	References

