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Abstract
Neural networks (NNs) hold great promise for advancing inverse design via topology optimization (TO), yet misconcep-
tions about their application persist. This article focuses on neural topology optimization (neural TO), which leverages 
NNs to reparameterize the decision space and reshape the optimization landscape. While the method is still in its infancy, 
our analysis tools reveal critical insights into the NNs’ impact on the optimization process. We demonstrate that the choice 
of NN architecture significantly influences the objective landscape and the optimizer’s path to an optimum. Notably, NNs 
introduce non-convexities even in otherwise convex landscapes, potentially delaying convergence in convex problems but 
enhancing exploration for non-convex problems. This analysis lays the groundwork for future advancements by highlighting: 
(1) the potential of neural TO for non-convex problems and dedicated GPU hardware (the “good”), (2) the limitations in 
smooth landscapes (the “bad”), and (3) the complex challenge of selecting optimal NN architectures and hyperparameters 
for superior performance (the “ugly”).

Keywords  Topology optimization · Machine learning · Neural reparameterization · Implicit biases · Loss and objective 
landscapes visualization · Optimization trajectories

Finding an effective representation of the decision space is cru-
cial in optimization, as a change of basis can transform a chal-
lenging problem into a more solvable one. Nature offers unparal-
leled examples of efficient representations—DNA, for instance, 
encodes the complexity of trillions of brain connections using 
just 30,000 genes (Stanley 2007). Inspired by such abstractions, 
this study investigates reparameterizing the design space using 
neural networks. Our goal is to evaluate whether this strategy, as 
suggested in the literature, can accelerate convergence or yield 
superior optima.

Topology optimization (TO) (Bendsøe and Kikuchi 1988) 
has been applied across a wide range of problems in science 
and engineering. It has proven effective for optimizing mate-
rial layouts in complex nonlinear (Xia et al 2018; Buhl et al 
2000; Fritzen et al 2016; Bendsøe et al 1996; Nakshatrala 
et al 2013; Chen et al 2018), transient (Min et al 1999; Le 
et al 2012; Yoon 2022), and multi-physics problems involv-
ing coupled differential equations (Silva and Kikuchi 1999; 
Yoon et al 2006; Kreissl et al 2011; Allen and Maute 2005; 
Yoon et al 2018; Yu et al 2019). Notably, TO has pushed 
design resolution boundaries to giga-scale for compliance 
minimization (Aage et al 2017).

Despite these successes, standard density-based TO has 
intrinsic limitations. First, fine mesh resolutions can lead to 
high computational costs. To mitigate this, researchers have 
explored reduced-order models (Kirsch and Papalambros 
2001; Xia and Breitkopf 2014), conventional surrogate mod-
els (Raponi et al 2019; Yoshimura et al 2016), and machine 
learning approaches (Woldseth et al 2022). However, these 
methods still face challenges as TO typically relies on first-
order optimizers, which may require dozens—or even hun-
dreds—of iterations to converge. Second, TO’s gradient-
based search often leads to local optima, making it less 
effective for non-convex problems. Strategies to address this 
include deflation, where the objective function is modified 

Responsible Editor: Joe Alexandersen.

Topical Collection: ICTAM 2024 - The centennial of ICTAM Guest 
Editors: J. Alexandersen, A.M. Aragón, X.S. Zhang, E. Lund, E. 
Wadbro, J. Kook

 *	 Alejandro M. Aragón 
	 a.m.aragon@tudelft.nl

 *	 Miguel A. Bessa 
	 miguel_bessa@brown.edu

1	 Faculty of Mechanical Engineering, Delft University 
of Technology, Mekelweg 2, 2628 CD Delft, 
The Netherlands

2	 School of Engineering, Brown University, 184 Hope Street, 
Providence RI 02912, Rhode Island, United States

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-025-04135-3&domain=pdf
https://orcid.org/0000-0003-1991-5932
https://orcid.org/0000-0003-2275-6207
http://orcid.org/0000-0002-6216-0355


	 S. M. Sanu et al.  213   Page 2 of 26

to steer the optimizer away from previously found solu-
tions (Papadopoulos et al 2021), and continuation schemes, 
which gradually modify the convexity of the problem in 
hopes of escaping suboptimal local minima (Rozvany 2009). 
Finally, because dimensionality of the design space is tied to 
the mesh resolution, the scale of the optimization problem 
can grow arbitrarily large, leading to significant computa-
tional burden and limiting the range of feasible optimiza-
tion algorithms. Thus, the way the problem is parameterized 
plays a critical role in overcoming these challenges.

The standard density-based parameterization, which 
assigns one decision variable per finite element, remains 
the most widely used technique in topology optimization 
(TO). This approach is often combined with penalization 
methods, such as the solid isotropic material with penaliza-
tion (SIMP) (Bendsøe and Sigmund 2004) or the rational 
approximation of material properties (RAMP) (Stolpe and 
Svanberg 2001). However, alternative parameterization tech-
niques have gained traction in recent years. For instance, 
geometric projection methods (Zhang et al 2016) and mov-
ing morphable components (Guo et al 2014) use simple geo-
metric primitives as building blocks, drastically reducing the 
number of design variables needed to represent a structure. 
These reparameterization strategies decouple geometry from 
analysis, creating a design space that does not scale with 
resolution. Other reparameterization approaches explored in 
TO include Fourier coefficients (White et al 2018, wavelets 
(Poulsen 2002), B-splines (Qian 2013), element connec-
tivities (Yoon and Kim 2005), distance fields(Biswas et al 
2004), and radial basis functions (Wang and Wang 2005. 
While these techniques offer advantages, some lead to con-
strained design spaces with limited expressivity, potentially 
hindering the discovery of optimal structures for a given 
resolution. This limitation highlights the need for a gen-
eral class of expressive and differentiable reparameteriza-
tion strategies that can be adapted to specific optimization 
problems.

Neural networks (NNs) offer a compelling alternative 
for reparameterizing topology optimization. Unlike other 
reparameterization methods, NNs are highly abstract and 
expressive (Hornik et al 1989). Moreover, their empiri-
cal success in diverse fields, despite being optimized with 
simple gradient-based algorithms starting from random ini-
tialization (Danilova et al 2022), suggests they can offer a 
promising design space. In TO, however, NNs have primar-
ily been used for supervised learning tasks. These include 
using NNs as surrogates to enhance computational effi-
ciency—by replacing analytical sensitivities or finite ele-
ment analysis (Chi et al 2021; Qian and Ye 2020)—or to 
predict near-optimal structures without optimization itera-
tions (Kallioras et al 2020; Kallioras and Lagaros 2020; Xue 
et al 2021; Sosnovik and Oseledets 2019; Banga et al 2018). 
Such supervised approaches require large training datasets 

and have limited extrapolation capabilities i.e., they per-
form poorly when encountering inputs outside the training 
set (Woldseth et al 2022). Consequently, their use has been 
discouraged. In contrast, using NNs for reparameterization 
without supervised training—relying instead on unsuper-
vised learning—provides an alternative approach. This strat-
egy operates at the intersection of TO and machine learning, 
requiring no training data while leveraging the flexibility of 
NNs. Despite its potential, neural reparameterization in TO 
is still a nascent field.

The first study in neural reparameterization for TO, con-
ducted by Hoyer et al (2019), utilized convolutional neural 
networks (CNNs). This choice was motivated by the resem-
blance of grid-based structures to images and the efficiency 
of CNNs in image processing. They reported a slight perfor-
mance advantage of neural reparameterization over standard 
density-based TO for compliance-minimization problems. 
Similarly, Zhang et al (2021) adopted a CNN-based archi-
tecture and tested it on various problems, including stress-
constrained compliance optimization, structural natural 
frequency optimization, compliant mechanism design, 
optimal heat conduction, and hyperelastic structure optimi-
zation. Their findings showed comparable performance to 
conventional TO. Departing from CNN architectures, Chan-
drasekhar and Suresh (2020) and Chandrasekhar and Suresh 
(2022) proposed fully connected neural networks to repre-
sent the density field as a continuous function of Cartesian 
coordinates, decoupling the geometric representation from 
the finite element mesh. Other studies (Deng and To 2020; 
Doosti et al 2021; Halle et al 2021; Zehnder et al 2021) 
explored similar architectures, experimenting with variations 
in filtering schemes, hyperparameters, and network designs. 
Despite these efforts, neural reparameterization remains a 
black box, and its utility is still uncertain. Critical aspects, 
such as the influence of neural architectures on optimization 
dynamics and their correlation with final performance, have 
not been thoroughly investigated. Furthermore, the lack of 
adherence to standard benchmarking practices for TO (Sig-
mund 2022) makes it challenging to assess whether reported 
improvements are meaningful.

This article focuses on characterizing and explaining the 
effects of NN reparameterization in topology optimization, 
which we name as “neural topology optimization” (neural 
TO). As a baseline for comparison, we use density-based 
TO with the SIMP method (Bendsøe and Kikuchi 1988) 
and the method of moving asymptotes (MMA) as the opti-
mizer (Svanberg 1987). Note that other TO methodologies 
could be used as baseline, but the point of this work is not 
to claim superiority of neural TO over other TO strate-
gies. Instead, we focus on providing the tools to effectively 
demonstrate both the positive and negative effects of neu-
ral TO, guiding the community toward meaningful future 
developments.
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1 � Formulation

Formally, the typical TO problem of minimizing structural 
compliance via a density-based method is formulated as fol-
lows (Sigmund and Maute 2013):

where � ∈ ℝ
N is a vector of decision variables (physical 

density field) taken from the design space D = [0, 1]N , N 
is the total number of finite elements; U is the displace-
ment vector obtained by finite element analysis, i.e., after 
solving the linear system of equations KU = F , with K and 
F denoting the global stiffness matrix and global force vec-
tor, respectively; c is the objective function, which gives a 
measure of compliance, and g0 is the volume of material that 
needs to satisfy the inequality constraint, with V0 denoting 
the maximum allowed volume. The subscript i denotes the 
corresponding element-wise quantities, and thus vi denotes 
the volume of the ith element and �i its density. Often, the 
SIMP law (Bendsøe and Sigmund 2004) is used to penalize 
intermediate density values (with penalty p = 3.0 ) to push 
the optimization toward a 0 and 1 (black-and-white) design. 
A density filter is usually applied to prevent the formation of 
artificially stiff checkerboard patterns and to enforce a mesh-
independent length-scale. The method was re-implemented 
based on the 88-line Matlab implementation (Andreassen 
et al 2011) and is considered as the baseline in all experi-
ments (Fig. 1).

(1)

�⋆ = argmin
�∈D

F(U(�),�) = U
⊺
F ≡ c,

such that g0(�) = V =
∑N

i=1
vi𝜌i ≤ V0,

KU = F,

0 ≤ 𝜌i ≤ 1, i = {1,… ,N},

,

1.1 � Neural topology optimization

We define reparameterization as any approach where the 
physical density field is expressed as the output of a func-
tion h, i.e., � = h(�) , where � ∈ ℝ

M are the new decision 
variables1. As a result of reparameterization, the minimized 
objective and the constraint are no longer F(�) and g0(�) 
but the composition functions F◦h(�) and g0◦h(�) , respec-
tively. Therefore, when an optimizer is used to update � , the 
physical density field is altered indirectly. Representing the 
reparameterization in this way allows for more flexibility in 
tailoring the decision space, as it can be both over-param-
eterized ( M > N  ) or under-parameterized ( M < N  ) when 
compared to the number of design parameters used in the 
baseline. Therefore, reparameterization decouples the finite 
element discretization and the representation of the density 
field.

Introducing a neural network (NN) to define the density 
distribution in a finite element mesh results in a method 
we refer to as “neural topology optimization” (Fig. 1). 
This reparameterization transforms the decision space 
into D̃ , where each parameter becomes unbounded, i.e., 
−∞ ≤ �i ≤ +∞ . NNs are parametric universal function 
approximators (Hornik et al 1989), in which the parameters 
are arranged into layers with one input layer and output lay-
ers and several hidden layers in between. The ith layer car-
ries out a mathematical operation of the form �

(
Wizi + bi

)
 , 

where zi is the input, Wi is a matrix of weights, bi the cor-
responding bias vector, and � is a nonlinear activation 

Fig. 1   Schematic of neural topology optimization (TO). Unlike stand-
ard density-based TO (baseline), an NN outputs the physical densities 
� (within the bounds [0, 1]), on which finite element analysis is per-
formed to obtain the objective. The network parameters are updated 
through an optimizer to indirectly alter the density field. For the base-
line, the individual “pixels” are the decision variables, while for the 

network, trainable parameters form the decision space. Depending on 
the network architecture, the output can either be the complete den-
sity field or the density at a specific location in the design domain. In 
the latter case, the network represents a continuous field (see Sec. B 
of the appendix for details about network architectures)

1  Note that even filters used in density-based TO can be regarded as 
reparameterizing the physical densities.
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function. For a network of L layers, i.e., L − 2 hidden layers, 
the density is calculated recursively as

The reparameterization function h is represented as a NN 
with trainable parameters � =

{
W1 …WL, b1 … bL

}
 , i.e., 

� = h
(
�, z1

)
 . Because the reparameterized decision vari-

ables are unbounded, a transformation is necessary to map 
the network outputs so that �i ∈ [0, 1] for material inter-
polation and further analysis. In this paper, we chose two 
approaches: (1) apply a sigmoid function to the network’s 
outputs, or (2) use a shifted-sigmoid “layer” (Hoyer et al 
2019) ( {h(�) | 0 ≤ h(�)i ≤ 1, g0(h((�))) = V0} ), where the 
shift parameter is determined with a bisection algorithm to 
strictly enforce the volume constraint as well (see appen-
dix B.1)2. Thus, the former strategy still requires a con-
strained optimizer similar to the standard approach (e.g., 
MMA, Svanberg (2002)) while the latter results in an uncon-
strained optimization, which can be solved by the common 
optimizers in machine learning (e.g., Adam, Kingma and Ba 
(2015)). Although many optimizers are available in machine 
learning, Adam remains the most widely used. A thorough 
benchmark study (Schmidt et al 2021) has shown that a well-
tuned Adam optimizer performs strongly across a wide range 
of tasks. Consequently, Adam was chosen for our study.

2 � Experiment to illustrate the effect 
of reparameterization

Start by considering the 2-D stress-constrained truss optimi-
zation problem (Stolpe 2003; Kirsch 1990), shown schemati-
cally in Fig. 2a. In this problem with an applied unit load in 
the middle node, the objective is to minimize the mass of the 
structure with constraints on the  stresses of the bars. The 
decision variables are the areas of the two bars A1 and A2 . 
The mathematical formulation of this problem is included 
in Sec. A of the appendix.

This seemingly simple problem has a two-dimensional 
decision space, which is shown in Fig. 2b. The figure high-
lights the feasible region (white), the constraints (red and 
orange), and local and global optima labeled as �l and �g , 
respectively3. As apparent from the figure, the design space 
for this problem is degenerate in the sense that the global 
minimum �g = (1, 0) can be reached from the feasible set 

(2)� = �
(
W

L
�
(
⋯ �

(
W

2
�
(
W

1
z
1
+ b

1

)
+b

2

)
⋯
)
+ b

L

)
.

only along the line A2 = 0 . Conversely, the local optimum, 
located at �l = (0, 1) can be reached more easily from the 
feasible set. It is therefore extremely challenging to find the 
global minimum using gradient-based optimization. This is 
shown by the typical trajectory followed by the MMA opti-
mizer from a feasible starting point �0 = (1, 1) (see baseline 
trajectory in green).

To explore the effect of reparameterization, we use the 
smallest NN architecture consisting of only three weights 
( �1 , �2 , and �3 ) from a four-neuron setup as shown in Fig. 2c. 
We remove the network’s bias parameters (to facilitate visu-
alization) and nonlinearly transform the original two-dimen-
sional decision space ( A1 and A2 ) into a three-dimensional 
space. As a result, we show that the same optimizer (MMA) 
is able to reach the global optimum �g from the same starting 
point, following the trajectory in Fig. 2d. A two-dimensional 
projection of this trajectory is also plotted in Fig. 2b for ref-
erence, which shows that the optimizer accesses the global 
optimum through the linear subspace. Thus, a well-chosen 
reparameterization reshapes the decision space, making new 
trajectories possible for the optimizer to reach the otherwise 
inaccessible global optimum. In this example, two factors 
facilitate this access. First, in Fig. 2d we see surfaces cor-
responding to the constraints that are periodically repeated 
due to the harmonic activation function chosen. As a result, 
there is an infinite number of global optima. However, this 
alone does not explain how the optimizer accesses the linear 
subspace (which remains degenerate, as we show in Sec. A 
of the appendix). The inset in Fig. 2d provides a closer view 
of the path to the optimum, sliced by three orthogonal planes 
intersecting the found global optimum (Fig. 2e). The feasible 
regions (white) in these planes indicate that the access path 
“opens up”. However, this effect resembles constraint relaxa-
tion (Verbart et al 2016; Duysinx and Bendsøe 1998; Cheng 
and Jiang 1992), where even if the degeneracy persists, it is 
surrounded by regions with extremely low constraint viola-
tions, appearing nearly feasible. Additional analytical and 
empirical details are provided in Sec. A of the appendix.

This example illustrates the positive impact of neural 
reparameterization on non-trivial objective landscapes. 
However, it does not address the challenges of identifying 
such beneficial network architectures, nor does it determine 
whether this approach can be advantageous for high dimen-
sional continuum TO problems such as standard compli-
ance optimization. Additionally, practical neural networks 
often have orders of magnitude more parameters, compli-
cating the analysis. Therefore, the remaining of the article 
will discuss a three step analysis strategy to understand the 
effects of NN choices in the context of neural TO, namely: 
1) visualizing objective landscapes; 2) analyzing optimizer 
trajectories; and 3) quantifying the expressivity of NNs. We 
select two conventional structural compliance TO problems, 
namely the tensile and the Michell beam cases (see Fig. 13 

2  Note that all these operations (including the density filter) that 
result in physical densities are absorbed into the definition of the neu-
ral network function h.
3  Without constraints, the problem has a trivial global optimum at 
(0,  0). Therefore we refer to the global optimum of the constrained 
problem.
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of the appendix), which have optimized solutions with dif-
ferent characteristic features (e.g., coarse and fine features), 
to showcase the results. We also consider three representa-
tive yet different NN architectures: 1) a feedforward NN 
with the commonly used Leaky-ReLU activation function 
(MLP) (Chandrasekhar and Suresh 2020); 2) a feedforward 
NN with sinusoidal activation functions (SIREN) (Sitzmann 
et al 2020); and 3) a convolutional NN (CNN) (Hoyer et al 
2019). A reader unfamiliar with these NNs is referred to 
Sec. B of the appendix (as well as the SI).

3 � High‑dimensional landscape analysis

3.1 � Objective landscape visualization

In machine learning (ML) terminology, F(�) is the loss 
function for the NNs. Thus, for every 𝜽 ∈ D̂ , we can asso-
ciate a scalar value c = F(h(�)) and together, this forms the 
(M + 1) dimensional loss landscape of the reparameterized 
optimization problem. High-dimensional neural loss land-
scapes are often visualized by perturbing a single chosen 
point along a single direction or along two directions (Good-
fellow and Vinyals 2015; Li et al 2018). However, none of 
these methods allows a fair comparison of neural schemes 

Fig. 2   Two-bar problem with stress constraints optimized using 
MMA, both with and without neural reparameterization: a Schematic 
showing two bars subjected to an axial load at the middle node. The 
objective is to minimize total mass by varying the bar areas (decision 
variables A1 and A2 ), with constraints on the maximum stress of each 
bar; b Original decision space, with the white area showing the feasi-
ble region of the design space (note the linear feasible subspace near 
(1,  0) along A2 = 0 ), and the colored regions noting the constraint 
violations. Starting from a feasible point �0 = (1, 1) , MMA converges 
to the local optimum �l = (0, 1) . Also shown is the projected trajec-
tory after reparameterization with an appropriate network, converg-

ing to the “singular” global minimum �g = (1, 0) ; c Network used to 
reparameterize the problem, with a fixed input ( z1 = 0.5 ) and only 3 
parameters ( �i ). The hidden neuron has a parametric sine activation 
function, and outputs A1 and A2 , where �0 is a hyperparameter; d 
The neural decision space and the corresponding trajectory followed 
by the optimizer in this space. The decision space (left) consists of 
repeating units, and the inset (right) shows a zoomed view of the dis-
torted constraint surfaces; e Three planes passing through the global 
optimum showing constraints, infeasible regions, and feasible paths 
to the solution. More details of the plots are given in SI and Sec. A 
of the appendix
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with the baseline. Unlike neural network parameters, the 
decision variables in the baseline are bounded, and thus per-
turbations can violate the bounds, making the loss evalua-
tion impossible, especially near minima. More importantly, 
the magnitude of the perturbations is arbitrary. As a result, 
smaller perturbations often show convex landscapes (due 
to the local convexity of even non-convex functions). Thus, 
comparing loss landscapes without considering the length-
scale of the visualization may be meaningless.

We propose a simple yet general method, building on 
the 1D visualization, to compare different optimization 
landscapes. To do so, we adopt the definition of reparam-
eterization as a mapping from the decision space to the 
physical density space (i.e., � = h(�) ). Under this defi-
nition, neural networks are analogous to the traditional 
filters and projections commonly used in density-based 
topology optimization but with a length-scale depend-
ent on the specific architecture (Dupuis and Jacot 2021). 
The procedure is detailed in Algorithm 1 in Sec. C of 
the appendix. First, we choose two reference points �1 
and �2 in the physical density space. For this study, we 
chose the physical density of the baseline’s converged 
solution as the first reference point. For the second point, 
we investigated two options: 

1.	 A uniform density design, which corresponds to the 
commonly used starting point of the baseline; and

2.	 Multiple random density designs, which are commonly 
used as initialization points for the neural networks.

Second, for each reparameterization, we find the points in 
the decision space that generate these densities by solving 
the following optimization problem:

where N is the number of finite elements4. By solving Eq. (3) 
once for each reference point and for a given reparameteriza-
tion h, we obtain the corresponding decision space points 𝜽̂1 
and 𝜽̂2 . Visualization in 1-D works by interpolating between 
these two points, i.e., by evaluating the objective and con-
straint values at a series of points between them. If the two 
points chosen have decision variables that are within bounds, 
all points along the line joining them would also satisfy the 
bounds. Mathematically, any point on the line joining two 
points �1 and �2 can be represented as

(3)𝜽̂ = argmin
𝜽

1

N

N∑

j=1

(
h(𝜽)j − �j

)2
,

Therefore, the loss landscape can be plotted by calculating 
the objective F◦h(��) and constraint g0◦h

(
��

)
 values for 

different values of � . By keeping the density space points the 
same for different reparameterizations, the loss landscapes’ 
length-scales are linked and comparisons are fair. To remove 
the bias introduced by the dimensionality of the design 
space, we chose network architectures (for MLP, SIREN, 
and CNN) with roughly the same number of parameters as 
the baseline.

 Fig.  3 shows compliance on the ordinate axis as a 
function of linear interpolation between these two refer-
ence points, where � = 0 and � = 1 denote initial and final 
designs, respectively5. The first reference point refers to an 
initial design with uniform density (solid thick line) or ran-
dom density initial designs (dashed thin lines). The second 
reference point is the solution obtained from the baseline for 
p = 1 , known to be a convex problem (Sigmund et al 2016). 
Parameters are then determined to represent these points, 
and compliance values are evaluated for interpolated param-
eters 0 < 𝛼 < 1 . The figure also indicates if the constraint 
on maximum material has been violated. Fig. 3 clarifies 
that neural TO leads to non-convex paths that link different 
initialization points to the final design obtained by density-
based TO, i.e., neural TO introduces “bumps” in the optimi-
zation path when linking the same initial and final designs of 
the baseline. This is relevant because these “bumps” impact 
the optimization process, as shown in the next subsection. 
Interestingly, the CNN architecture is less prone to introduc-
ing non-convexities than the other two architectures. While 
the results are shown for p = 1 , the same holds for p = 3 , as 
well as for all other TO examples we considered (see SI). For 
p = 3 non-convexities are even more pronounced.

3.2 � Optimizer trajectories

Visualizing objective landscapes offers qualitative insights 
into the optimization process, but the linear slices observed 
do not depict the actual optimizer’s path. These landscapes 
were visualized by connecting initial and final designs (deci-
sion variables) obtained through the baseline strategy (not 
neural TO). Hence, the second step in our analysis contrasts 
the actual trajectories followed by the optimizer in neural 
TO versus those of the baseline. This approach uses the opti-
mizer as a probe to explore the landscape. To ensure fair-
ness, we initiate all analyses from the same starting point. 
The idea is that by using the same optimizer, the differences 
in the trajectories can reveal how the reparameterization 
alone affects the landscapes. To compare the trajectories, 

(4)�� = �1 + �
(
�2 − �1

)
, 0 ≤ � ≤ 1.

4  Note that even though we have used � here, this method is equally 
applicable to visualize the baseline’s landscape as well. For instance, 
it can be used to assess the effect of adding projection filters or mak-
ing changes to SIMP’s penalty, among other modifications. Further-
more, other reference points can also be chosen based on conveni-
ence.

5  This linear slice of the landscape reflects what a line-search algo-
rithm would encounter along this direction.
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we note that the gradient of the objective function �c plays 
an important role in how the optimizer traverses the land-
scape. Therefore, we plot the magnitude of the objective’s 
gradient ‖�c‖—calculated using automatic differentiation 
and verified using finite difference calculations—and the 
gradient’s direction. The latter is calculated as the angle � 
between successive gradient vectors according to the cosine 
similarity, i.e.,

for iterations i − 1 and i. In addition, we plot the optimiza-
tion history, showing how the objective and constraints vary 
from one step of the optimizer to the next in the different 
landscapes. Finally, we examine the linear subspace that 
connects the starting and ending points of the optimization 
trajectory. To do this, we use Eq. (4) to interpolate between 
the starting point (uniform gray, which remains the same 
for all methods) and the solutions found in each decision 
space. It is important to note that such a plot does not allow 
comparisons among landscapes but provides information 
specific to the converged solution, as Eq. (3) is not used for 
making these plots.

We consider two different optimizers, such that the distor-
tion of the objective landscape by neural TO is isolated from 
the choice of optimizer: 1) MMA (Svanberg 1987), which 
is common in TO literature; and 2) Adam (Kingma and Ba 
2015), which is used in the NN literature. Note that hyperpa-
rameter optimization is performed for each optimizer fairly 
for every test case considered (see Sec. E of the appendix). 
Fig. 4a shows the compliance normalized by the compliance 
of the best design obtained by the baseline for the Michell 
problem with p = 3 , as well as the volume constraint when 
using MMA with each of the architectures for neural TO. In 
essence, all cases converge to similar and feasible designs 

cos� =
�c(i).�c(i−1)

‖‖�c(i)‖‖‖‖�c(i−1)‖‖
,

(see Fig. 4c), although usually requiring more iterations 
for neural TO compared to the baseline method. Fig. 4 also 
provides additional information on two important charac-
teristics of the optimization process for neural TO. First, 
if we linearly interpolate between the initial point in the 
decision space to the final one, we see in Fig. 4b that the 
objective landscape is either non-convex or has significant 
constraint violations for all architectures of neural TO (and 
for all problems we evaluated, as can be seen in SI). Sec-
ond, the evaluation of the gradient norm and angle for each 
iteration in Fig. 4d reveals that all neural TO strategies zig-
zag through the optimization path, i.e., the angle is rarely 
zero as it was observed for the baseline. This demonstrates 
that neural TO introduces non-convexities (“bumps”) in the 
objective landscape (as discussed earlier in Fig. 3), even for 
otherwise convex landscapes as obtained for p = 1 . These 
“bumps” perturb the way the optimizer traverses the land-
scape, thereby slowing down the optimization, i.e., neural 
TO usually requires more iterations to converge as compared 
to the baseline method. SI shows the same results when con-
sidering the Adam optimizer, which favors the optimiza-
tion process of neural TO. While using a CNN architecture 
proved surprisingly competitive, the results herein seem to 
indicate an overall negative outcome for neural TO since 
they require more iterations, at least for well-behaved and 
nearly convex compliance optimization problems. This is an 
important limitation in practice.

4 � Expressivity of neural TO

The analysis so far focused on NN architectures whose num-
ber of parameters is comparable to those used by the baseline. 
However, the design space of neural TO can be over- or under-
parameterized, i.e., the number of decision variables (weights 

Fig. 3   The objective landscapes (interpolating between the same 
reference points) for different neural reparameterization methods 
compared against the baseline. The end point, at � = 1 , is the deci-
sion space point corresponding to the baseline solution ( ̂𝜽

⋆
 ) while the 

starting point is either uniform gray ( ̂𝜽u , solid thick lines) or random 
values (denoted by multiple gray dashed thin lines). Plots are shown 

for Michell boundary value problem for SIMP penalty p = 1 (see SI 
for more results). Constraint violations are indicated by colored mark-
ers, with the size of the markers proportional to the violation at each 
point
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and biases of the NN) can be higher or lower than the number of 
finite elements’ density values. Here we investigate the effect of 
the decision space dimensionality, i.e., the number of trainable 
parameters, for the three NN architectures. If a network is not 
capable of representing the necessary structural features, then 
neural TO will not be effective because there will be designs that 
cannot be created (the design space becomes restricted). Con-
versely, even if a network is capable of representing the neces-
sary structural features, the objective landscape’s non-convexity 
with respect to the network parameters can make the optimiza-
tion process more difficult (or easier), as demonstrated earlier.

Herein we use a simple strategy to assess the network expres-
sivity by assuming that baseline solutions represent the ground 
truth (for which we used MMA with tuned hyperparameters). 
We then quantify the neural networks’ ability to represent such 
topologies and use that quantity as a measure of the expres-
sivity. We use the peak signal-to-noise ratio (PSNR), which is 

commonly used in computer vision literature to measure the 
discrepancy between a noisy (or reconstructed) image and the 
ground truth. The PSNR is calculated as

where R is the maximum possible pixel value that we set to 
R = 1 , and MSE refers to the mean-squared error. Therefore, 
a high PSNR value corresponds to a design that is visu-
ally similar to that obtained by the baseline. For instance, 
the lowest value in Fig. 11 is PSNR ≈ 33 and is visually 
indistinguishable.

First, we generated baseline solutions for three test cases—
namely, the Messerschmitt-Bölkow-Blohm (MBB), Michell, 
and cantilever beams (see Fig. 13)—at the required mesh resolu-
tion, with the target volume set at V0 = 30% . Notice that the 

(5)PSNR = 10 log10
R2

MSE
,

Fig. 4   Comparison of MMA’s trajectory on the neural landscape 
against the conventional landscape for the Michell problem (with 
penalization p = 3 and target volume fraction of 60%): a Compliance 
c normalized by the baseline solution c⋆ (left ordinate) and volume 
fraction V (right dashed ordinate), as functions of the optimization 
iteration; b Normalized compliance interpolated between the initial 

and optimized solutions. The size of the dots indicate the amount of 
constraint violation; c Best feasible designs obtained during optimiza-
tion for each method, all having similar compliance; d L2-norm of the 
objective gradient and the angle between successive gradient vectors 
at each point along the optimizer’s trajectory
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optimized designs for these bending-dominated problems will 
portray fine structural features. Next, we selected a series of net-
works—both under- and over-parameterized—with different 
number of network parameters. Namely, the ratios between the 
network and baseline parameters are 

{
3

10
,

6

10
,
23

10
,
37

10
,
50

10

}
 (see 

SI for exact architecture details)6. Second, we solved Eq. (3) for 
each network and test case combination by substituting � with 
the target baseline solution �⋆ and subsequently computed its 
corresponding PSNR value. After obtaining the PSNR values 
for the three test cases, the worst value was taken as the measure 
for that particular network at that mesh resolution. Because this 
measure is influenced by the optimizer and its hyperparameters, 
we also conducted hyperparameter tuning to maximize the 
PSNR value. Finally, we repeated this procedure five times with 
different starting points for the hyperparameter optimization to 
obtain PSNR values for each set of the best-identified hyperpa-
rameters. This allowed us to calculate the mean and confidence 

bounds. We repeated the experiment for four different mesh 
resolutions ( 64 × 32 , 128 × 64 , 256 × 128 , and 320 × 160).

Fig. 5 presents the number of network parameters in abscissas 
and the peak signal-to-noise ratio (PSNR) in ordinates. PSNR 
is a common metric for assessing image reconstruction quality, 
with values above 60 dB considered high. The PSNR is calcu-
lated based on the worst fit obtained from the Messerschmitt-
Bölkow-Blohm (MBB) beam, cantilever beam, and Michell 
beam test cases (see Fig. 13). The CNN has the highest recon-
struction capabilities for any number of parameters7. Unsur-
prisingly for a reader familiar with machine learning, MLP and 
SIREN are less expressive than CNNs. Each curve also includes 
a cross symbol that separates the under-parameterized regime (to 
the left) from the over-parameterized regime (to the right). Note-
worthy, CNNs are always over-parameterized and both SIREN 
and MLP lose expressivity as they become under-parameterized. 

Fig. 5   a Peak signal-to-noise ratio (PSNR) values for NNs with dif-
ferent number of parameters, measured for 4 mesh resolutions (image 
sizes). A higher PSNR value indicates that the NN is able to accu-
rately represent the design obtained from the baseline (taken as 
ground truth). Shaded region denote confidence intervals (one stand-
ard deviation) measured across several tuned hyper-parameters. The 
dashed vertical lines correspond to a network that has about 2000 

parameters, independent of mesh resolution. Cross markers indicate 
architectures with parameters matching each mesh resolution, dis-
tinguishing between over-parameterized and under-parameterized 
regimes. b Final designs for the Michell beam problem and their 
deviations from the baseline for a 320 × 160 resolution for all net-
works corresponding to cross markers

6  We note that the CNN architecture cannot be under-parameterized 
when compared to the number of finite elements, thus all CNN net-
works are only over-parameterized.

7  The decreasing PSNR values for increasing CNN parameters is 
due to two factors: 1) Training with lower floating-point precision on 
GPUs introduces numerical effects as the errors are already very low 
( < 10

−6 ); and 2) Allocating parameters across different types of CNN 
layers can impact performance.
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Finally, the expressivity of MLPs drop drastically at higher mesh 
resolutions, where more fine features are present (Fig. 5b).

The differences in expressivity have been explained in 
NN literature in the context of image learning (Ulyanov 
et al 2017; Strümpler et al 2022). CNNs use convolutional 
filters that capture important features of images and intro-
duce translation equivariance. While MLPs start training by 
learning low-frequency features, SIRENs do so with high-
frequency features (Rahaman et al 2019). Practical TO prob-
lems often involve slender structures that are more easily 
reconstructed by networks able to generate high-frequency 
features.

Regarding the MLP and SIREN network architectures, in 
most published works the network size is kept constant with-
out regard to the mesh resolution (Chandrasekhar and Suresh 
2020; Deng and To 2020; Chandrasekhar and Suresh 2022). 
A vertical dashed line in the figure indicates the PSNR 
results attained by a network architecture with approximately 
2000 parameters. At the highest resolution, this fixed archi-
tecture must represent a design with 320 × 160 = 51 200 
pixels (or densities) using approximately 2000 parameters, 
resulting in over a 250-fold compression and degrading the 
representation quality accordingly. Thus, using a network of 
fixed size produces simpler structures as the mesh resolution 
is increased. Finally, the superior performance of SIREN 
compared to MLP can be attributed to SIREN’s ability to 
represent high frequencies necessary for sharp solid-void 
transitions, similar to square waveforms. MLP struggles with 
this due to its spectral bias, which causes it to fit lower-
frequency signals first and capture higher frequencies very 
slowly.

5 � Performance of neural TO

While the expressivity of a reparameterization can be 
advantageous for certain boundary value problems, it may 
prove detrimental for others, depending on the problem’s 
characteristics. For instance, the density filter used in the 
baseline reduces expressivity but prevents convergence to 
checkerboard patterns, which are otherwise favored by the 
optimizer. Ultimately, the optimization dynamics dictate the 
effectiveness of a given reparameterization.

We employ performance profiles (Dolan and Moré 2002) 
to compare neural TO against the baseline, considering three 
boundary conditions (MBB, tensile, and bridge cases) and 
volume fraction constraints ranging from 10% to 60%, ensur-
ing diverse problem features. This results in a total of 18 
distinct problems (see Rojas-Labanda and Stolpe (2015) for 
an example of performance profiles in TO). The profiles 
evaluate three metrics: (1) the best objective value achieved 
within a fixed budget of 200 function evaluations (first col-
umn), (2) the number of iterations to convergence (second 

column)8, and (3) the actual performance after thresholding 
gray designs into black-and-white. The abscissa represents 
the tolerance percentage, indicating the allowable deviation 
from the best solution obtained across all methods (not nec-
essarily the baseline). The ordinate shows the percentage 
of problems where the performance satisfies this tolerance. 
Since the performance of optimizers depends on the cho-
sen hyperparameters, we tuned them individually for each 
test case and for all methods (including both the baseline 
and neural reparameterizations) to ensure fair comparisons. 
Hyperparameter tuning can be computationally expensive as 
it involves a bi-level optimization process, where topology 
optimization is repeated for each set of hyperparameters. 
For efficiency, the hyperparameters for each problem were 
optimized on a coarser mesh size of 64 × 32 and then applied 
to the final optimization at a higher resolution of 576 × 288 
(see Sec. E of the appendix for more details).

The performance profiles reveal several intriguing 
insights into the interaction between the optimizer and 
the loss landscape. First, Adam consistently outperforms 
MMA in finding better solutions, as evidenced in the first 
column of Fig. 6. This is because Adam’s adaptive learn-
ing rates enable it to navigate the tortuous objective land-
scapes of neural TO effectively, making it a favored opti-
mizer in machine learning. This holds true irrespective of 
the reparameterization chosen. Second, among the neural 
reparameterizations, MLPs are the least effective in find-
ing optimal solutions. Their limited expressivity prevents 
them from representing thin structural members, which 
are critical for bending-dominated problems. Conversely, 
CNNs, with their high expressivity, can sometimes suffer 
from structural links being severed during thresholding, 
leading to increased compliance (third column). Interest-
ingly, CNN-based designs often remain viable even after 
thresholding, especially when the optimization starts from 
favorable initializations. Striking a balance, SIRENs main-
tain their performance after thresholding due to careful tun-
ing of their frequency hyperparameter to match the problem 
characteristics. Third, on average, all neural TO schemes 
converge more slowly than the baseline, with SIRENs being 
the slowest (requiring more than twice the number of itera-
tions). This is attributed to the increased complexity of the 
associated loss landscapes. However, CNNs can converge on 
par with or even faster than the baseline, benefiting from the 
relatively well-behaved landscapes they generate. Finally, 
when focusing on the best performance, CNNs optimized 
with MMA emerge as strong competitors to the baseline. 
They achieve comparable objective values both before and 
after thresholding, and, in many cases, converge as quickly 
or faster. This finding challenges the common perception 
8  Convergence is defined as the iteration at which the objective value 
stabilizes, i.e., when the optimizer achieves an objective value within 
a percentage (here set to 5%) of its corresponding best.
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that MMA is unsuitable for optimizing neural networks. We 
hypothesize that the nearly convex loss landscape associated 
with CNNs facilitates this synergy.

Furthermore, for the MBB, bridge, and tensile test cases 
considered during benchmarking, we analyzed the robust-
ness of each method to hyperparameters, as shown in Fig. 7 
using box plots. These box plots illustrate the median, 25% 
and 75% quartiles, and outliers, based on hyperparameter 
optimization results after excluding divergent cases. The 
baseline emerged as the most robust approach, while the 
performance of the SIREN was highly sensitive to hyper-
parameter selection. This variability in performance is 
also evident when considering the initialization of neural 
topology optimization. Despite starting each optimization 
run from a nearly uniform output, different runs produced 
designs with varying performance. These findings highlight 
the high sensitivity of neural TO—particularly when using 
randomly chosen networks—to both initialization and hyper-
parameter selection.

6 � Outlook: going beyond compliance 
optimization

Future work will seek to extend neural TO beyond com-
pliance minimization, exploring problems characterized by 
highly non-convex objective landscapes and more complex 
constraints. Two recent investigations submitted after the 
preprint of our article have already initiated this path (Nor-
der et al 2025; Herrmann et al 2024). Norder et al (2025) 
demonstrated that neural topology optimization was advan-
tageous in the context of Photonics by designing pentagonal 
crystal mirrors for lightsails, while Herrmann et al (2024) 
investigated the potential benefits of neural optimization for 
an acoustic problem. Our work focuses on structurally sim-
pler problems but aims to provide deeper insight into when 
and why neural reparameterization offers advantages and 
disadvantages.

Although this is beyond the scope of this work, we include 
in this section two additional problems—summarized in 

Fig. 6   Performance profiles showing a Median performance across 
six different network initializations; and b Best performance. For all 
methods, the profiles compare the best objective value attained during 
optimization (left column), the number of iterations to convergence 
(middle column), and the compliance after thresholding to black-and-
white designs (right column). The plot shows the percentage of test 

cases (ordinates) where each method achieved results within a toler-
ance (abscissas) of the best-performing method for that case. Neural 
TO was carried out using both Adam and MMA optimizers, while the 
baseline method only used MMA. All networks have parameters cor-
responding to the a mesh resolution of 576 × 288 elements, and were 
pretrained to start with a uniform density distribution
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Figure  8—that may provide additional insights on the per-
formance of neural TO: the area-to-point thermal conduction 
optimization, and compliant mechanism design, following 
the formulations in Wang et al (2010). While both problems 
share a similar framework with compliance minimization 
(the heat conduction problem is essentially analogous to it), 
they differ in their specific objective functions and physi-
cal parameters (see Sec. E.5). Our results in Fig. 8 show 
that neural TO can produce solutions that outperform the 
baseline (with sufficient hyperparameter tuning), while also 
emphasizing the challenges posed by complex objective 
landscapes. Notably, MLPs exhibit a persistent preference 
for simpler designs, underscoring their limitations in tack-
ling these problems.

6.1 � Imposing constraints

We are grateful to an anonymous reviewer for suggesting the 
inclusion of a brief discussion about imposing non-trivial 
constraints in neural TO. While a comprehensive investi-
gation is beyond the scope of this work, we implemented 
an Augmented Lagrangian (AL) formulation to address 

the stress-constrained optimization problem, following the 
formulation proposed by  (Verbart et al 2016) (detailed in 
appendix (E.5)). The aim is to minimize structural volume 
(V) subject to a constraint on maximum allowable stress. We 
adopt the standard L-shaped bracket as the benchmark prob-
lem (Fig. 13) and use the lower-bound Kreisselmeier–Stein-
hauser (KS) function for constraint aggregation.

To enforce the stress constraint, we employ the adap-
tive AL method introduced by Basir and Senocak (2022), 
originally developed for training physics-informed neural 
networks. This approach is applied consistently across all 
parameterizations, with hyperparameters tuned individually 
for each case. The resulting optimization histories, physi-
cal designs, and  stress fields (from finite element analysis) 
are shown in Fig. 9. While the method produces realistic 
structures and yields comparable objective values for most 
parameterizations (with the exception of the MLP), exact 
constraint satisfaction remains challenging, requiring many 
optimizer iterations and extensive hyperparameter tuning. A 
more thorough investigation is needed to understand these 
limitations and to develop robust methods for incorporat-
ing complex constraints into neural topology optimization 
frameworks.

Fig. 7   Robustness to hyperparameter selection when Adam is used 
for optimizing the networks. The box plots show the variation in the 
compliance c as hyperparameters are varied for the different models. 

The outliers are marked while the median (middle of the box) and the 
25% and 75% quartiles are shown (box’s ends)
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Fig. 8   Comparing neural TO’s performance (optimized with Adam) 
against baseline on compliant mechanism design (a) and thermal con-
duction (b) problems.   For the NNs, multiple curves correspond to 
optimizations from six different random starting points. Note that all 
networks are pretrained to generate uniform gray density field. The 

plots show the objective value’s evolution with optimization itera-
tion. The best thresholded designs and their objective values are also 
shown below the corresponding scheme. Note that hyperparameter 
tuning was performed for each method
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7 � Discussion

Neural topology optimization (neural TO) reparameterizes 
the decision space, replacing the elemental physical densi-
ties on the finite element mesh with the weights (and biases) 
of a neural network. While such change-of-variables strate-
gies are well established in optimization, the use of neu-
ral networks introduces both opportunities and challenges, 
which we have sought to highlight in this work to provide 
insights for future research.

From a classical optimization standpoint, neural TO may 
seem counterintuitive. Traditional TO methods often aim to 
convexify the design problem to improve convergence and 
robustness. In contrast, introducing a neural network as a 
parameterization typically makes the optimization landscape 

more non-convex, especially in problems that are otherwise 
nearly convex—such as compliance minimization. We observed 
this across all three neural network architectures studied. The 
degree of distortion, however, depended strongly on the net-
work architecture. As a result, neural TO tends to be more 
sensitive to initialization and hyperparameters, often requiring 
significantly more iterations to reach designs with comparable 
objective values to standard density-based methods.

The advantages of neural TO become more pronounced 
in highly non-convex problems, where local minima vary 
substantially in quality. This view is supported by the find-
ings of Herrmann et al (2024), who had been aware of the 
preprint version of this article. They applied neural TO 
(referred to as optimization with a neural network ansatz) to 
a challenging acoustic design problem and found that neural 

Fig. 9   Comparison of neural topology optimization and baseline 
methods on a stress-constrained L-shaped bracket problem. First row: 
evolution of the augmented Lagrangian (L, bold left axis) and objec-
tive (V, dashed, right axis) as a function of iterations; L may increase 
as it balances contributions from the objective and constraints. Third 
and fourth rows: final designs, corresponding objective values (with 

constraint violations), and stress distributions in regions with material 
density above 0.5. All methods use a modified augmented Lagran-
gian (Basir and Senocak 2022) with the lower-bounded KS function 
( ΦL )  (Verbart et al 2016), with hyperparameters tuned for fair com-
parison
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parameterization can lead to better-performing designs. They 
conjectured that overparameterization may help escape poor 
local minima by reducing the likelihood that all gradient 
components vanish simultaneously. Here we show definite 
proof using the 2D truss problem that reparameterization, 
even when the over-parameterization is not severe, creates 
access paths to otherwise inaccesible minima by reshap-
ing the landscape. The resulting landscape is determined 
by the inductive biases—i.e., the network’s natural prefer-
ence toward representing certain function classes over oth-
ers. This was evident in our expressivity study: MLPs, with 
their limited expressivity, consistently produced smoother 
(low-frequency) outputs, regardless of parameter count. As 
a result, they tended to yield simpler structural layouts across 
all tested problems. In contrast, SIRENs were more flex-
ible, capable of representing a broader range of frequencies 
and generating both fine and coarse features. However, the 
“right” bias is problem-specific. Arbitrarily chosen architec-
tures may underperform—even with tuning—because the 
extent to which one can influence a network’s bias by adjust-
ing width or depth alone is limited. For example, Herrmann 
et al (2024) reported that using an MLP for certain analytical 
functions failed to produce the expected improvements. Our 
study provides a clear explanation for this outcome through 
the lens of inductive bias and expressivity.

This motivates the need for domain-informed architec-
tures. Many of the networks used in this and related studies 
were not designed with TO in mind. CNNs, for instance, 
were originally developed for image-processing tasks, and 
features like residual connections were added to ease opti-
mization in that context (Li et al 2018). Yet, CNNs in our 
study surprisingly performed well even when optimized 
using classical methods like MMA. This could be due to 
the structural similarity between images and the grid-based 
representations of TO designs. These observations suggest 
that neural TO could benefit significantly from architectures 
specifically designed for structural optimization—ones that 
embed properties like connectivity, load-bearing behavior, 
or manufacturability directly into the network. Early signs 
of this promise are visible in work on domain-informed 
reparameterizations  (Both et al 2023; Heydaribeni et al 
2024; Berzins et al 2024). However, their application to 
TO remains underexplored. Future research should aim to 
develop and evaluate such architectures, potentially leverag-
ing experience from solved TO problems to guide network 
design or initialization. To provide insights into designing 
architectures, we introduced simple yet effective analysis 
tools, including visualization of objective landscapes, char-
acterization of optimizer trajectories, and measurements 
of neural network expressivity. These tools can guide the 
design of both neural and density-based TO approaches, 
helping researchers identify which architectural choices 
improve convergence and solution quality.

Finally, it is important to acknowledge the limitations of 
this study. First, empirical performance alone cannot deter-
mine whether neural TO is fundamentally superior or inferior 
to conventional methods. The effectiveness of any reparam-
eterization—neural or otherwise—depends on the specific 
characteristics of the optimization problem. In line with the 
“no free lunch” theorem (Wolpert and Macready 1997), no 
single approach can consistently outperform all others across 
every problem class. Our objective was not to establish neural 
TO as universally better, but rather to understand and artic-
ulate when and why certain neural architectures may offer 
advantages—or face limitations—within TO frameworks. 
Second, the problems investigated in this study are relatively 
small in scale. Future research should assess the scalabil-
ity of neural TO, including its computational and memory 
costs, especially when applied to high-resolution or three-
dimensional problems. Third, this work focused mostly on 
problems with a simple volume constraint. Reliably enforc-
ing general constraints in neural network-based optimization 
is an important challenge, and the Augmented Lagrangian 
implementation considered in Section 6.1 needs to be investi-
gated thoroughly in the future. Other formulations for impos-
ing constraints could also be considered. For example, we 
experimented with a quadratic penalty method but found it 
to be highly dependent on the starting penalty value and its 
increment. We conjecture that neural TO is better suited for 
penalty or augmented Lagrangian methods because it lever-
ages standard unconstrained optimizers, but we also showed 
that MMA can be used in neural TO. Still, we expect that the 
unconstrained optimizers that are commonly used in neural 
network training are better suited for neural TO. Overall, the 
development of effective and scalable constraint-handling 
techniques will be critical to advancing neural TO for more 
complex and realistic applications.

Appendix A Two‑variable stress‑constrained 
problem

We adopt the following problem formulation (Verbart et al 
2016):

where the unscaled stress constraint is gi =
|�i|
�max

− 1 , and 
�max = 1 is the allowable stress. The objective is to find the 
values of A1 and A2 that minimize F  according to these con-
straints. The global optimum is known to be at A1 = 1 and 
A2 = 0 , which is a point difficult to reach with 

(A1)

�⋆ = argmin
�=(A1,A2)∈ℝ

2

F
(
A1,A2

)
= 0.6A1 + 0.8A2,

such that ḡi =
(

Ai

2

)
gi ≤ 0,

0 ≤ Ai ≤ 2, i ∈ {1, 2},
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gradient-based optimizers in this decision space (recall 
Fig. 2b). To solve this constrained optimization problem, we 
used the method of moving asymptotes (MMA Svanberg 
(2002)) as the optimizer, with a move limit parameter 
m = 2.0 and the asymptote initialization a = 0.1 . We tried 
different values for these parameters by performing hyper-
parameter optimization (including other starting points) but 
all of them converged to the local minimum at (0, 1).

We then reformulated this problem as a neural TO exam-
ple considering the smallest NN that reparameterizes the 
original two-dimensional decision space ( A1 and A2 ) into 
a three-dimensional decision space ( �1 = W1 , �2 = W2 and 
�3 = W3 ) corresponding to the three weights of the NN 
(Fig. 2c). The NN architecture has only 4 neurons: a fixed 
input neuron z1 = 0.5 , a single hidden layer neuron with a 
parametric sine activation function of the form sin

(
�0�1z1

)
 , 

and two output neurons that yield A1 and A2 . We can write 
this explicitly as: Ai = sin

(
�i+1 sin

(
�0�1z1

))
+ 1 , for 

i = {1, 2} , where �0 is the frequency hyperparameter. We 
also use MMA as the optimizer, and its hyperparameters 
(including the bounds for the variables), together with the 
frequency parameter �0 were tuned using the Tree-struc-
tured Parzen Estimator (TPE) algorithm implemented in 
Optuna (Akiba et al 2019) so as to attain the global optimum 
for the original problem. For the results shown in the main 
text we used m = 0.31 , a = 0.1 , �0 = 88 , and the bounds 
on � were set to [−3, 3]9. It is worth noting that we could 
find many hyperparameters that converged to the global 
optimum. Interestingly, for one such set of hyperparameters 
( m = 0.4 , a = 0.3 , �0 = 40 , and bounds  [−11, 11] ), the neu-
ral reparameterization converged in three iterations (see SI).

Landscape plots (Fig. 2 in main text)

For clarity here we explain how the figure in the main text 
was constructed. Sec. 1 of SI contains the analytical equa-
tions of the transformed constraint equations after reparam-
eterization. It is interesting to note that each constraint now 
has two branches and there exists an infinite number of con-
straints for different choices of c ∈ ℤ (the set of all integers). 
These branches are shown in the figure with dashed and 
continuous lines, where lines of the same color represent 
the same constraint boundary. Additionally, the axes, which 
were also part of the constraint boundaries ( Ai = 0 ), after 
transformation, have been represented with dotted lines. We 
can get equations with similar characteristics for the other 
planes, i.e., branching into two solutions and being infinitely 
periodic. However, their expressions are more cluttered, 
so they are not shown here for brevity but are plotted in 

Fig. 10a. It should be noted that the global optimum must lie 
on the constraint boundary and is marked on all three planes 
with �g . In Fig. 2e of the main document, these boundaries 
are plotted over a much smaller range and were identified 
empirically from data10.

Fig. 10b reconstructs parts of the main document figure to 
explain how the optimizer can access the global constrained 
optimum in the neural space. On the left, the original decision 
space is shown schematically, highlighting the 1-D feasible 
subspace to the global optimum along A2 = 0 . The middle 
figure presents a scatter plot of a region around the optimum, 
where marker sizes are proportional to the constraint viola-
tion. Values below 10−7 are treated as feasible (markers disap-
pear), while violations above 10−5 are considered completely 
infeasible. Between these values, marker sizes scale loga-
rithmically to the maximum size, resulting in a nearly sharp 
transition at the meeting point of the two branches of ḡ2 = 0 . 
Here, the thin linear subspace is barely visible.

For the same plot settings (including the density of scat-
tered points), the �3 − �2 plane in the neural space (right) 
shows a seemingly broader feasible region. However, the 
analytical plot of the constraint boundaries of the same plane 
(focusing on the inset at the top-right corner) shows that the 
only access is along the horizontal dotted line (correspond-
ing to A2 = 0)11. Thus, while the feasible access is math-
ematically still one-dimensional, the neural reparameteriza-
tion induces a “constraint relaxation” (similarly to what is 
discussed by Verbart et al (2016)), creating a surrounding 
region with negligible constraint violation, thereby facili-
tating access to the optimum. We made the same plots by 
lowering the threshold for feasibility (from 10−7 to 10−10 ) and 
observed no changes.

Appendix B Neural network architectures

The first neural network architecture chosen for this work 
is the multi-layer perceptron (MLP), where the outputs of 
neurons in a given layer are connected to all neurons of 
the next layer (see Fig. 2 of SI). Although similar fully-
connected networks have been used by others (Deng and 
To 2020; Zehnder et al 2021; Mai et al 2022; Jeong et al 
2023; Qian et al 2022), we adopt the specific structure cho-
sen by Chandrasekhar and Suresh (2020), which has five 
hidden layers. Each hidden layer performs batch normaliza-
tion (Ioffe and Szegedy (2015)(see Sec.2 of SI) and applies 

9  MMA requires bounds on the decision variables for optimization. 
Since neural weights are unbounded, we have to restrict their range. 
The choice of bounds is an important hyperparameter.

10  A uniform grid is constructed, and the constraint functions are 
evaluated at each node. The boundaries are then identified from this 
data using a marching cubes algorithm.
11  The reader is reminded that the region inside the ellipses is infeasi-
ble, except for this line.
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Leaky-ReLU nonlinear activation � = max (0.01l, l) , where 
the max function is applied element-wise.

Although MLPs are universal approximators, they suffer 
from spectral bias and struggle to represent high-frequency 
features. To address this, either input coordinates can be 
projected using random Fourier features (RFFs) or sinusoi-
dal activation functions can be used.  Chandrasekhar and 
Suresh (2022) used RFFs for length-scale control in topol-
ogy optimization. Using the same fully connected architec-
ture but with a sine activation function results in SIREN net-
works (Sitzmann et al 2020). In our study, we chose SIRENs 
for their structural similarity to MLPs and their memory effi-
ciency. This choice does not impact generality, as SIRENs 
have been shown to be equivalent to RFF-MLPs (Benbarka 
et al 2022). A hidden layer of a SIREN takes the input and 
applies the transformation sin

(
�0(Wl + b)

)
 , where �0 is a 

hyperparameter that dictates the highest frequencies that can 

be represented. The coordinates of the centers of the finite 
elements xi are given as inputs to the network and their cor-
responding density values �

(
xi

)
 are retrieved from the net-

work. For a 2-D finite element mesh, this mapping can be 
written as �i = h

(
�; xi

)
∶ ℝ

2
→ ℝ.

Finally, we also consider a convolutional NN (CNN), 
an architecture widely used for image processing. Specifi-
cally, for this study we use the decoder-type architecture 
adopted by Hoyer et al (2019) and by Zhang et al (2021), 
which takes as input a vector z ∈ ℝ

n to generate the physi-
cal density field � . The input vector—whose dimension n 
is an architectural choice, often chosen such that it is less 
than the number of image pixels—is treated as a trainable 
parameter and is randomly initialized; the CNN’s mapping 
� = h(�; z) ∶ ℝ

n
→ ℝ

N , yields the full density field of the 
finite element discretization. Here, N = Nx × Ny , with Nx 
and Ny denoting the number of finite elements along their 

Fig. 10   a Analytical constraint boundaries in the neural space 
at three orthogonal planes intersecting the global optimum 
( �⋆ = (−1.272, 0,−2.901) ) found by the  MMA optimizer. Dashed 
and continuous lines of the same color designate the two branches. 
Dotted lines represent the transformed equations Ai = 0 ; b Illustra-
tion of how the original 1-D degenerate subspace to the global mini-
mum is transformed in the neural space. The original decision space 

is shown on the left (the degenerate subspace has been enlarged for 
clarity), while the middle figure provides a zoomed-in view of the 
degenerate subspace (actual scatter plot). The figure on the right 
shows the same subspace in the neural space. Both plots have the 
same density of points, and the marker sizes are proportional to the 
constraint violation
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respective Cartesian directions. Unlike MLPs and SIRENs, 
the CNN architecture (see Fig. 2 of SI) depends on the mesh 
resolution, i.e., once the architecture is chosen, the resulting 
design is fixed in size. Therefore, to generate a larger resolu-
tion design, the number of CNN parameters has to be scaled 
up (similarly to the baseline). As opposed to the architecture 
used by Hoyer et al (2019); Zhang et al (2021) that had 5 
hidden layers, we limit the number of hidden layers to two. 
Additionally, in experiments designed to match the number 
of parameters of the CNN architecture to that of the baseline, 
we set the number of convolutional channels as well as the 
dimension of z to 1, and used only three convolution filters: 
two in the first hidden layer and one in the last.

Other choices were made to make fair comparisons: 
We do not use continuation schemes for the SIMP penalty 
factor. Furthermore, although NNs become more expres-
sive either through increasing the number of hidden layers 
(depth) (Lu et al 2017) or the number of neurons per layer 
(width) (Hornik et al 1989), we chose the latter and fixed the 
depth for all experiments. All networks were implemented 
in JAX (Bradbury et al 2018) using the Haiku library (Hen-
nigan et al 2020), within our in-house topology optimization 
library.

B.1 Volume constraint enforcement

Most publications that use reparameterization (e.g., Chan-
drasekhar and Suresh (2020, 2022) among others) either 
use quadratic penalty or augmented Lagrangian meth-
ods to convert the constrained optimization problem to 
an unconstrained one, thereby enabling common opti-
mizers in machine learning to be used. However, these 
introduce additional hyperparameters, such as the initial 
penalty value, its increment magnitude per iteration, and 
the criterion used to increase the penalty value. Setting 
these hyperparameters appropriately can be challenging. 
Instead, we either use MMA as the optimizer for the neural 
TO—for which enforcing the volume constraint is straight-
forward—or when using Adam as the optimizer we enforce 
the volume constraint through the shifted-sigmoid strat-
egy (Hoyer et al 2019). The latter applies a parametric-
sigmoidal transformation on the outputs of the network at 
each iteration of the optimization process. Briefly, we use 
the following sigmoid function:

where the output of the network (i.e., 𝝆̃ ) is transformed 
into physical densities bounded between 0 and 1. The 
scalar parameter b shifts the output to ensure the vol-
ume constraint is enforced exactly at every iteration, i.e., 
g0(�) = V0 . This converts the original constrained problem 

𝜌i =
1

1 + exp(𝜌̃i−b(𝝆̃,V0))
,

into an unconstrained one, allowing the use of common 
ML optimizers. The value of b depends on the output and 
the required volume fraction, and it is determined using a 
bisection algorithm (within an error of 10−12 ). For the neural 
networks, we obtained smoother results when this operation 
was carried out after the density filtering. We note that this 
technique is similar to the volume-preserving threshold-
ing filter of Xu et al (2009), except that the smoothness of 
the projection is not controllable. However, we found our 
approach to be more robust, as the bisection algorithm suc-
cessfully found roots for all tested cases without failure.

Appendix C Landscape analysis

Algorithm 1   Loss landscape visualization using linear 
interpolation

Table 1   Maximum mean square error during optimization (Eq.  (3)) 
for loss landscape visualization

Baseline MLP SIREN CNN

Tensile ( p = 1) 6.6 × 10
−8

5.6 × 10
−5

1.4 × 10
−5 3.9 × 10

−7

Michell ( p = 1) 9.6 × 10
−8

7.3 × 10
−5

3.3 × 10
−5

2.5 × 10
−5

Tensile ( p = 3) 7.2 × 10
−8

5.6 × 10
−5

3.4 × 10
−5 3.9 × 10

−7

Michell ( p = 3) 1.6 × 10
−7

5.6 × 10
−5

1 × 10
−5 4.2 × 10

−4
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C.1 Visualization

The algorithm for generating the 1-D loss landscape plots 
is detailed in Alg.  1. Additionally, the errors obtained 
after solving the optimization problem in Eq.  (3) using 
the L-BFGS optimizer are presented in Table 1, while the 
designs produced by the network after optimization are 
illustrated in Fig. 11. Additional plots for more cases are 
provided in the SI for brevity.

C.2 Trajectory analysis

Fig. 12 presents the metrics analyzed along the optimizer’s 
trajectory for all models, test problems (tensile and Michell), 
and optimizers (MMA and Adam).

Appendix D Expressivity study

The results of this expressivity study are summarized in 
Fig. 5 of the main text. We also considered the CNN used 
by Hoyer et al (2019), that even though is over-parameter-
ized by approximately 120 times, it achieved similar PSNR 
values (71, 74, 75, and 74 for all four resolutions) 12. SI 
contains information on the exact architectures used in this 
study.

Appendix E Topology optimization details

For all the boundary value problems considered in this study 
(see Fig. 13), Young’s moduli were set at 10−9 for the void 
and 10 for the material, and Poisson’s ratio was set to 0.3; 

plane stress conditions were assumed. For solving the finite 
element discrete system of equations, a direct LU solver was 
used. We use the Python implementation of MMA from 
Deetman (2024).

E.1 Initialization

The baseline is initialized with a uniform density field, where 
each pixel is set to the target volume fraction. To be consist-
ent with the baseline and to start the optimization from a 
feasible point, we trained the NNs’ parameters to generate 
a uniform gray density distribution before starting topology 
optimization (Zhang et al 2021). This can be achieved by 
solving Eq.  (3), by setting �i = V0 . This pretraining was per-
formed with 300 iterations of Adam (Kingma and Ba 2015) 
(with a default learning rate of 0.001), yielding errors lower 
than 10−4 . Noteworthy, the cost of this operation is negligible 
since neither the expensive finite element analysis nor the 
adjoint analysis is conducted.

E.2 Thresholding designs

To obtain black-and-white designs—i.e., density values of 
either 0 or 1 for all finite elements—we use the algorithm 
described by Sigmund (Sigmund 2022). Briefly, if the num-
ber of elements/pixels is N, then the design is flattened and 
sorted in descending order based on the densities. Then, the 
number of pixels to be set to black Np is obtained by

where V0 is the target volume fraction. Then, the discrete 
design is obtained by setting the first Np values to 1 and all 
others to 0.001 (Sigmund 2022). If the volume fraction 
changes slightly, a new compliance value can be calculated 

(E2)Np =
N
(
V0 − 0.001

)

1 − 0.001
,

Fig. 11   The physical densities obtained for the Michell test case after solving Eq. (3) for the reference point (corresponding to the solution of the 
baseline)

12  These results are not shown in Fig.  5 because the number of 
parameters is much larger than those of the other CNN networks con-
sidered.
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as cnew = cth ×
Vth

V0

 , where cth is the compliance value of the 
thresholded design with a volume fraction Vth , which 
(slightly) violates the target volume fraction V0 . Typical 
designs after thresholding are shown in SI.

E.3 Hyperparameter tuning

We tuned the hyperparameters only at the lowest resolution 
( 64 × 32 ) by performing 60 iterations with the optimizer, 
and used the hyperparameters that minimized the compli-
ance for the optimization at higher resolutions. The hyper-
parameters chosen for the different methods were: 

Fig. 12   Comparison of optimizer’s trajectory on the neural landscape 
against the conventional landscape (with penalization p = 3 and tar-
get volume fraction of 60%). The first column shows the compliance 
c normalized by the baseline solution c⋆ and volume fraction V, as 
functions of the optimization iteration; the last column is the normal-

ized compliance along interpolation between initial and final designs. 
The size of the dots indicate the amount of constraint violation; the L2
-norm of the objective gradient and the angle between successive gra-
dient vectors at each point along the optimizer’s trajectory are shown 
in the middle two columns
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1.	 MMA

•	 Move limit m;
•	 Asymptote initialization a;
•	 Bounds on decision variables b (only for training 

neural networks)

2.	 Adam

•	 Learning rate �;
•	 Gradient clipping value gc (i.e., scaling of the gradi-

ent vector if its norm is above this value).

In addition to these optimizer-specific hyperparameters, 
SIREN has an additional hyperparameter �0 , which con-
trols the frequencies that can be learned. All hyperparam-
eters were tuned with the Optuna package (Akiba et al 2019) 
using the TPE  algorithm. For the test cases used in the 
landscape visualization, the best hyperparameter values were 
obtained after 25 outer iterations.

E.4 Performance profiles

Performance profiles (Dolan and Moré 2002) are used for 
statistically comparing s solvers (or methods) on t test cases. 
To construct a performance profile, the performance ratio for 
solver i on case j is defined as

where M is any scalar metric of interest (e.g., best objective 
value, converged iteration, or compliance of the thresholded 
design) that is to be compared. This ratio indicates the per-
formance relative to the best solver for that particular case. 
Next, the solver is treated as a “winner” for a particular case 
if its performance is within a tolerance of the best solver 
according to the following function:

where � ≥ 1 is the tolerance factor. If � = 1 , the allowable 
error is 0%, and only one solver is allowed to be the win-
ner for a given test case.   With increasing tolerance (from 
1 → ∞ ),  multiple solvers  may qualify as  winners. The 
performance profile is then the evolution of the percentage 
of test cases where the solver is a winner as the tolerance 

rij =
Mij

min(M1j,M2j,⋯ ,Mnj)
, Mij ≥ 0,

(E3)k(rij, �) =

{
1 rij ≤ �,

0 otherwise,

Fig. 13   Different boundary value problems used in this study. All 
loads are distributed (not concentrated) across a finite length. For 
the bridge case, the top few elements have been designated as a non-
design domain with a constant material density of 1.0. For the 
L-shaped bracket, a square non-design region spanning 60% of the 
design area was set to have a constant material density of 0

▸
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is relaxed. Thus, the performance profile for the ith solver 
is given by

which denotes the probability that the solver’s performance 
is within a factor � of the best possible performance for all 
test cases. For all plots showing performance profiles, the 
allowed tolerance (in %) is used as the abscissas instead of �.

E.5 Extension to other problems

Section 6 included two additional problems where we tested 
neural TO: thermal conduction optimization, and compli-
ant mechanism design. Here, we provide additional details 
for replication of the results, and we also include another 
example involving stress-constrained volume minimization 
in appendix (E.5). The first two problems are structurally 
similar to compliance minimization in that they involve 
volume constraints, which are relatively straightforward to 
enforce. In contrast, the stress-constrained formulation intro-
duces significant challenges, which we discuss in greater 
detail in appendix (E.5).

E.5.1 Volume‑constrained problems: thermal compliance, 
and compliant mechanism design

For the thermal conduction problem, the goal is to optimize 
the material distribution to efficiently dissipate heat from 
a design domain to a sink. The material conductivity is set 
to 1.0, while the void or non-material regions have a con-
ductivity of 0.001. The objective function F  is expressed 
as F = P

⊺
U , where P = F represents the unit thermal load 

distributed throughout the domain. For this problem we set 
the target volume to V0 = 30%.

For the compliant mechanism design problem, the objec-
tive is to construct a mechanism where the force applied at 
the top-left node of the domain yields the maximum negative 
displacement at the top-right node. Here, the input spring 
stiffness ( kin ) and input force are both set to 1, while the 
output spring stiffness ( kout ) is set to 0.001. All entries in 
vector P are zeros except for the one corresponding to the 
output degree of freedom (the top-right node), which is set 
to one. The target volume is set to V0 = 40%.

We follow the same procedure as with compliance mini-
mization, i.e., pretraining to uniform density initialization, 
hyperparameter tuning at 64 × 32 resolution, and testing at 
544 × 272.13 The results, as well as schematics of the bound-
ary conditions, are shown in Fig. 8. We only used Adam as 

(E4)pi(�) =

∑
j k(rij, �)

m
,

the optimizer since it was better than MMA for the compli-
ance-minimization problem.

E.5.2 Stress‑constrained optimization

We consider the following optimization problem from Ver-
bart et al (2016):

where the objective is to minimize the structural mass, and 
Ψ is an aggregation function that combines the element-wise 
local stress constraint values ḡi into a single global con-
straint. Each local constraint is defined as ḡi = 𝜌i

(
𝜎i

𝜎max
− 1

)
, 

where �i denotes the von Mises stress at the centroid of the 
ith element. Note that the stress is computed assuming the 
full (solid) Young’s modulus, rather than interpolated stiff-
ness, to better reflect physical fidelity, i.e., we use the micro-
scopic stress definition instead of the homogenized stress. 
We set the allowable stress limit to �max = 0.75 with the 
force applied being 2.014, distributed over 5 nodes. The 
choice of aggregation function Ψ significantly influences the 
optimization results. We consider the lower-bounded Kreis-
selmeier–Steinhauser (KS) function  (ΨL)  (Verbart et  al 
2016):

where the parameter P controls the smoothness and close-
ness to the true maximum function—larger values of P 
result in a tighter approximation. We set P = 10 in all our 
experiments. The square domain was discretized with a 
N = 96 × 96 regular mesh, with each element having unit 
dimensions. All other settings were kept similar to Verbart 
et al (2016).

As MMA has shown limited robustness even for enforc-
ing simple volume constraints in neural TO, we adopt an 
alternative strategy: the augmented Lagrangian (AL) method 
(see Byrd et al (1994) for further details). The augmented 
Lagrangian function is defined as

(E5)

�⋆ = argmin
�∈D

V =
1

V0

N∑

i=1

vi𝜌i,

such that g0(�) = Ψ(ḡi) ≤ 0,

KU(�) = F,

0 ≤ 𝜌i ≤ 1,

i = {1,… ,N},

(E6)ΨL(ḡi) =
1

P
ln

(
1

N

N∑

i=1

exp(Pḡi)

)
,

(E7)L = V + �g0 + �g2
0
,

13  Since the thermal problem has a square domain, we use the same 
number of elements for x and y directions i.e., we test at 544 × 544 
mesh resolution 14  All values in standard units
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 where � and � are dual variables  with the same dimension-
ality as the number of constraints. The AL method consists 
of two nested updates: in the inner loop, the design vari-
ables are updated for fixed dual variables to minimize the 
AL function; in the outer loop, the dual variables are updated 
based on constraint violations. Initially, constraint viola-
tions are penalized lightly, but the penalization increases 
with infeasibility. As a result, the AL objective may increase 
during early iterations. Once constraints become feasible (or 
active, in the case of equality constraints), their contribution 
to the AL vanishes.

In our study, we employ the Adam optimizer for the 
inner updates, with gradient clipping applied: if the gradi-
ent norm exceeds a predefined threshold, it is rescaled to 
this threshold, a standard practice in neural network training 
to enhance stability. To further improve the robustness of 
AL in the context of neural networks, we adopt the adap-
tive dual update scheme proposed in Basir and Senocak 
(2022), governed by two tunable hyperparameters � and �
. The parameter α introduces a momentum-like effect by 
applying an exponentially weighted average to the squared 
constraint term. This running history is then combined with 
the hyperparameter γ, which plays a similar role to a learn-
ing rate, to update the penalty (μ). Finally, as in the standard 
AL method, the Lagrange multiplier (λ) is updated using the 
calculated penalty.

Hyperparameters for the outer optimization (e.g., � and 
� ), Adam’s learning rate, the number of inner steps, and the 
gradient clipping threshold are tuned individually for each 
method; the tuned values are shown in Table 2. To evalu-
ate constraint-handling capability, we consider an L-shaped 
bracket under stress constraints and optimize both the stand-
ard SIMP parameterization and three neural parameteriza-
tions using the modified AL framework.

While the AL method offers an alternative to MMA, 
it comes with its own limitations. As formulated, the AL 

method is primarily suited for equality constraints. Although 
slack variable formulations could extend its applicability 
to inequality constraints, such extensions require further 
research. Additionally, the AL method typically requires 
a large number of iterations for convergence, since each 
outer iteration involves an inner optimization loop of 50-60 
steps. The method is also highly sensitive to hyperparameter 
choices, making it less robust in practical settings.
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